Skip to main content
Log in

In silico study of effects of polymorphisms on biophysical chemical properties of oxidized N-terminal domain of X-ray cross-complementing group 1 protein

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Base excision repair (BER) is the major pathway involved in removal of endogenous and mutagen-induced DNA damage. The X-ray cross-complementing group 1 protein (XRCC1), which participates in BER, is a scaffolding protein. The oxidized XRCC1 N-terminal domain (NTD) forms additional interactions with DNA polymerase β (Pol β). Any change in the residues of a protein (XRCC1, XRCC4, etc.) may alter its stability and function. Many coding regions of genes have single nucleotide polymorphisms (SNPs) that change the conformation of their products, and they are probably involved in some diseases. The R7L and R107H mutations are located in the XRCC1-NTD. In the present study, biophysical chemical properties of oxidized XRCC1-NTD (wild type or mutants) were investigated at different temperatures (290, 295, 298, 301, 304, 309, 310, 311, and 312 K) in water using in silico molecular mechanic computational methods. Comparison of the average calculated potential energies of oxidized XRCC1-NTD reveals that the R7L mutation increases stability, but the R107H and R7L&R107H mutations are destabilizing. Therefore, mutant types of this protein (R107H or R7L&R107H) may not function correctly. Furthermore, quantitative structure-activity relationship (QSAR) of oxidized XRCC1-NTD and docking assay showed that the R7L mutation is advantageous but the R107H and R7L&R107H mutations are disadvantageous for XRCC1-NTD, and in the latter cases it cannot interact with Pol β as well as the wild type does. Hence, DNA repair may be defective. Also, using the equation dE = ∂E/(∂T)V·dT + ∂E/(∂V)T·dV, it was determined that the best temperature for normal activity of oxidized XRCC1-NTD is exactly the natural body temperature (310 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckman, K. B., and Ames, B. N. (1997) J. Biol. Chem., 272, 19633–19636.

    Article  CAS  PubMed  Google Scholar 

  2. Lindahl, T. (1993) Nature, 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  3. Carrano, A. V., Minkler, J. L., Dillehay, L. E., and Thompson, L. H. (1986) Mutat. Res., 162, 233–239.

    Article  CAS  PubMed  Google Scholar 

  4. Dominguez, I., Daza, P., Natarajan, A. T., and Cortes, F. (1998) Mutat. Res., 398, 67–73.

    Article  CAS  PubMed  Google Scholar 

  5. Ochs, K., Sobol, R. W., Wilson, S. H., and Kaina, B. (1999) Cancer Res., 59, 1544–1551.

    CAS  PubMed  Google Scholar 

  6. Thompson, L. H., Brookman, K. W., Dillehay, L. E., Mooney, C. L., and Carrano, A. V. (1982) Somatic Cell Genet., 8, 759–773.

    Article  CAS  PubMed  Google Scholar 

  7. Veld, C. W. O. H., Jansen, J., Zdzienicka, M. Z., Vrieling, H., and van Zeeland, A. A. (1998) Mutat. Res., 398, 83–92.

    Article  Google Scholar 

  8. Zdzienicka, M. Z., Van der Schans, G. P., Natarajan, A. T., Thompson, L. H., Neuteboom, I., and Simons, J. W. I. M. (1992) Mutagenesis, 7, 265–269.

    Article  CAS  PubMed  Google Scholar 

  9. Lindahl, T., and Wood, R. D. (1999) Science, 286, 1897–1905.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson, L. H., Brookman, K. W., Jones, N. J., Allen, S. A., and Carrano, A. V. (1990) Mol. Cell. Biol., 10, 6160–6171.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Brookman, K. W., Tebbs, R. S., Allen, S. A., Tucker, J. D., Swiger, R. R., Lamerdin, J. E., Carrano, A. V., and Thompson, L. H. (1994) Genomics, 22, 180–188.

    Article  CAS  PubMed  Google Scholar 

  12. Shen, M. R., Zdzienicka, M. Z., Mohrenweiser, H., Thompson, L. H., and Thelen, M. P. (1998) Nucleic Acids Res., 26, 1032–1037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Taylor, R. M., Moore, D. J., Whitehouse, J., Johnson, P., and Caldecott, K. W. (2000) Mol. Cell. Biol., 20, 735–740.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Thompson, L. H., and West, M. G. (2000) Mutat. Res., 459, 1–18.

    Article  CAS  PubMed  Google Scholar 

  15. Marintchev, A., Mullen, M. A., Maciejewski, M. W., Pan, B., Gryk, M. R., and Mullen, G. P. (1999) Nat. Struct. Biol., 6, 884–893.

    Article  CAS  PubMed  Google Scholar 

  16. Kubota, Y., Nash, R., Klungland, A., Schar, P., Barnes, D., and Lindahl, T. (1996) EMBO J., 15, 6662–6670.

    CAS  PubMed  Google Scholar 

  17. Marintchev, A., Mullen, M. A., Maciejewski, M. W., Pan, B., Gryk, M. R., and Mullen, G. P. (1999) Nat. Struct. Biol., 6, 884–893.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, L. H., and West, M. G. (2000) Mutat. Res., 459, 1–18.

    Article  CAS  PubMed  Google Scholar 

  19. Caldecott, K., and Jeggo, P. (1991) Mutat. Res., 255, 111–121.

    Article  CAS  PubMed  Google Scholar 

  20. Cantoni, O., Murray, D., and Meyn, R. E. (1987) Chem. Biol. Interact., 63, 29–38.

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, L. H., Brookman, K. W., Dillehay, L. E., Carrano, A. V., Mazrimas, J. A., Mooney, C. L., and Minkler, J. L. (1982) Mutat. Res., 95, 427–440.

    Article  CAS  PubMed  Google Scholar 

  22. Zdzienicka, M. Z., Vanderschans, G. P., Natarajan, A. T., Thompson, L. H., Euteboom, I., and Simons, J. W. I. M. (1992) Mutagenesis, 7, 265–269.

    Article  CAS  PubMed  Google Scholar 

  23. Dominguez, I., Daza, P. A., Natarajan, T., and Cortes, F. (1998) Mutat. Res., 398, 67–73.

    Article  CAS  PubMed  Google Scholar 

  24. Yutani, K., Ogasahara, K., and Sugino, Y. (1985) Adv. Biophys., 20, 13–29.

    Article  CAS  PubMed  Google Scholar 

  25. Shen, M. R., Jones, J. M., and Mobrenweiser, H. (1998) Cancer Res., 58, 604–608.

    CAS  PubMed  Google Scholar 

  26. Duell, E. J., Wiencke, J. K., Cheng, T. J., Varkonyi, A., Zuo, Z. F., Ashok, T. D., Mark, E. J., Wain, J. C., Christiani, D. C., and Kelsey, K. T. (2000) Carcinogenesis, 21, 965–971.

    Article  CAS  PubMed  Google Scholar 

  27. Camilla, F. S., Mona, S., Hakan, W., Bjorn, A. N., Per, C. H., Inger, M. B. L., Steinar, A., Egil, J., Inger-Lise, H., Ulla, V., and Elin, H. K. (2006) BMC Cancer, 6, 67.

    Article  Google Scholar 

  28. Chih-Ching, Y., Fung-Chang, S., Reiping, T., Chung, R. C., and Ling-Ling, H. (2005) BMC Cancer, 5, 12.

    Article  Google Scholar 

  29. Dai, L., Duan, F., Wang, P., Song, C., Wang, K., and Zhang, J. (2012) Mol. Biol. Rep., 39, 9535–9547.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, L., Ruan, Z., Hong, Q., Gong, X., Hu, Z., Huang, Y., and Xu, A. (2012) Oncol. Lett., 3, 351–362.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Brian, F., Scott, W., Yoshiko, K., James, A. S., Robert, C. M., and Jun, N. (2006) Cancer Res., 66, 2860–2868.

    Article  Google Scholar 

  32. Zhang, L., Wang, Y., Qiu, Z., Luo, J., Zhou, Z., and Shu, W. (2013) Pak. J. Med. Sci., 29, 37–42.

    PubMed  Google Scholar 

  33. Lei, J., Xiao, F., Yi, B., Jue-Yu, Z., Xiao-Yan, S., Mao-Hua, D., Yi, C., Guo-Han, H., and Yi-Cheng, L. (2013) PLoS One, 8, e55597.

    Article  Google Scholar 

  34. Shujie, G., Xiaobo, L., Min, G., Yuqiong, L., Bei, S., and Wenquan, N. (2013) PLoS One, 8, e56213.

    Article  Google Scholar 

  35. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, C., Ghio, G., and Alagona, S. (1984) J. Am. Chem. Soc., 106, 765–784.

    Article  CAS  Google Scholar 

  36. Trott, O., and Olson, A. J. (2010) J. Comput. Chem., 31, 455–461.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Papoian, G. A., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z., and Wolynes, P. G. (2004) Proc. Natl. Acad. Sci. USA, 101, 3352–3357.

    Article  CAS  PubMed  Google Scholar 

  38. Koizumi, M., Hirai, H., Onai, T., Inoue, K., and Hirai, M. (2007) J. Appl. Cryst., 40, 175–178.

    Article  Google Scholar 

  39. Boas, F. E., and Harbury, P. B. (2007) Curr. Opin. Struct. Biol., 17, 199–204.

    Article  CAS  PubMed  Google Scholar 

  40. Takano, K., Yamagata, Y., Fujii, S., and Yutani, K. (1997) Biochemistry, 36, 688–698.

    Article  CAS  PubMed  Google Scholar 

  41. Takano, K., Funahashi, J., Yamagata, Y., Fujii, S., and Yutani, K. (1997) J. Mol. Biol., 274, 132–142.

    Article  CAS  PubMed  Google Scholar 

  42. Fujiwara, K., Toda, H., and Ikeguchi, M. (2012) BMC Struct. Biol., 12, 1–15.

    Article  Google Scholar 

  43. Harano, Y., Roth, R., and Kinoshita, M. (2006) Chem. Phys. Lett., 432, 275–280.

    Article  CAS  Google Scholar 

  44. Kinoshita, M. (2009) Int. J. Mol. Sci., 10, 1064–1080.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Michael, R., Barnes, I., and Gray, C. (2003) Bioinformatics for Geneticists, John Wiley & Sons, Ltd, pp. 289–316.

    Google Scholar 

  46. Makhtadze, G. I., and Privalov, P. L. (1993) J. Mol. Biol., 232, 639–657.

    Article  Google Scholar 

  47. Eisenberg, D., Weiss, R. M., Terwilliger, T. C., and Wilcox, W. (1982) Faraday Symp. Chem. Soc., 17, 109–120.

    Article  Google Scholar 

  48. Nowak, M. A., Komarova, N. L., Sengupta, A., Jallepalli, P. V., Shih, I. M., Vogelstein, B., and Lengauer, C. (2002) Proc. Natl. Acad. Sci. USA, 99, 16226–16231.

    Article  CAS  PubMed  Google Scholar 

  49. Matthew, J., Cuneo, R., and London, E. (2010) PNAS, 107, 68056810.

    Article  Google Scholar 

  50. Kenakin, T. (2004) Trends Pharm. Sci., 25, 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mehrzad.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 1, pp. 41–48.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrzad, J., Monajjemi, M. & Hashemi, M. In silico study of effects of polymorphisms on biophysical chemical properties of oxidized N-terminal domain of X-ray cross-complementing group 1 protein. Biochemistry Moscow 79, 31–36 (2014). https://doi.org/10.1134/S0006297914010052

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914010052

Key words

Navigation