Skip to main content
Log in

Blood-brain barrier unlocked

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The brain is protected by a physiological blood-brain barrier (BBB) against toxins and some metabolites circulating in the blood. At the same time, the BBB limits penetration into the brain of many neuroactive drugs. Efficient ways to increase BBB permeability for delivery of drugs of different chemical nature into the brain are unknown. This work deals with delivery into the brain of 10−2 M dopamine, a substance that does not penetrate the BBB under normal circumstances. It was studied in two independent experiments: (i) penetration of 3H-labeled dopamine from its mixture with 10−5 M H2O2 into hypothalamus and striatum structures of intact rat brain, and (ii) effect of unlabeled dopamine from a mixture with H2O2 on the rat motor activity in a haloperidol catalepsy model. It was shown that (i) at the third minute after nasal application of the dopamine + H2O2 mixture, the dopamine level increases 45-fold in the hypothalamus and almost 30-fold in the striatum and (ii) motility of animals in the catalepsy haloperidol model is recovered 90 sec after intranasal introduction of dopamine. No such effects were observed after replacement of H2O2 by 0.9% NaCl solution. Thus, it was shown on the example of dopamine that its introduction into the nasal cavity simultaneously with H2O2 provides for rapid delivery of the drug into the brain. These results expand our knowledge concerning the biological role of exoROS in modulating BBB permeability and may contribute to the development of a new therapeutic strategy for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBB:

blood-brain barrier

DA:

dopamine

DOPAC:

3,4-dihydroxyphenylacetic acid

endoROS:

endogenous (metabolic) ROS

exoROS:

exogenous ROS

GS:

gaseous superoxide

HBO:

hyperbaric oxygenation

HPLC:

high performance liquid chromatography

MAO-A and MAO-B:

monoamine oxidase A and B-respectively

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

6-OHDA:

6-hydroxydopamine

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  1. Halliwell, B., and Gutteridge, J. M. C. (1988) Hum. Toxicol., 7, 7–13.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, G. (1994) Ann. NY Acad. Sci., 738, 8–14.

    Article  CAS  PubMed  Google Scholar 

  3. McCord, J. M. (1993) Clin. Biochem., 26, 351–357.

    Article  CAS  PubMed  Google Scholar 

  4. McCord, J. M. (1995) PSEBM, 209, 112–117.

    CAS  Google Scholar 

  5. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nat. Rev. Genet., 6, 866–872.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein, N. I., Goldstein, R. N., and Merzlyak, M. N. (1992) Int. J. Biometeorol., 36, 118–122.

    Article  Google Scholar 

  7. Goldstein, N. I. (2000) Biophysical Aspects of the Exogenous Superoxide Physiological Effect on Animals: Doctoral dissertation [in Russian], Moscow State University, Moscow.

    Google Scholar 

  8. Arsavskis, V., Goldsteins, N., Aroncika, B., Konstantinova, O., and Raits, E. (1991) Latvijas Arsts, 2, 77–80 (in Latvian).

    Google Scholar 

  9. Goldstein, N. I., Voskresenskaya, O. G., Dubynin, V. A., Levitskaya, N. G., and Kamensky, A. A. (2003) Byul. Eksp. Biol. Med., 135, 253–256.

    Article  Google Scholar 

  10. Goldstein, N., Baumann, S., Lewin, T., Kamensky, A., Dubinin, V., and Konstantinova, O. (1996) Inflamm. Res., 5, 473–478.

    Article  Google Scholar 

  11. Golubev, V. L., Sadekov, R. A., Pilipocich, A. A., and Goldstein, N. I. (2003) Lechenie Nervnykh Boleznei, 4, 26–30.

    Google Scholar 

  12. Goldstein, N. I., Naidin, V. L., and Fedorova, N. V. (2002) Neurol. J. (Moscow), 6, 45–48.

    Google Scholar 

  13. Abbott, N. J. (2000) Cell Mol. Neurobiol., 20, 131–147.

    Article  CAS  PubMed  Google Scholar 

  14. Miller, A. A., Drummond, G. R., and Sobey, C. G. (2006) Antioxid. Redox Signal., 8, 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  15. Kang, Y. S. (2006) Adv. Exp. Med. Biol., 583, 291–298.

    Article  CAS  PubMed  Google Scholar 

  16. Faraci, F. M. (2006) J. Appl. Physiol., 100, 739–743.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, H. S., Namkoong, K., Kim, D. H., Kim, K. J., Cheong, Y. H., Kim, S. S., Lee, W. B., and Kim, K. Y. (2004) Microvasc. Res., 68, 231–238.

    Article  CAS  PubMed  Google Scholar 

  18. Goldstein, N., and Goldstein, R. (2002) Patent DE 10248601.

  19. Zolotarev, Yu. A., Dadayan, A. K., Borisov, Yu. A., and Kozik, V. S. (2010) Chem. Rev., 110, 5425–5446.

    Article  CAS  PubMed  Google Scholar 

  20. Ehrenstrom, F., and Johansson, P. (1985) Life Sci., 36, 867–879.

    Article  CAS  PubMed  Google Scholar 

  21. Levitskaya, N. G., Sebentsova, E. A., Andreeva, L. A., Alfeeva, L. Y., Kamenskii, A. A., and Myasoedov, N. F. (2004) Neurosci. Behav. Physiol., 34, 399–405.

    Article  CAS  PubMed  Google Scholar 

  22. Ashmarin, I. P., Levitskaya, N. G., Antonova, L. V., Nezavibatko, V. N., Alfeeva, L. Yu., Dubinin, V. A., Golubovich, V. P., Ponomareva-Stepnaya, M. A., and Kamensky, A. A. (1994) Regul. Pept., 51, 49–54.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Ghananeem, A. M., Malkawi, A. H., and Crooks, P. A. (2011) Drug Dev. Ind. Pharm., 37, 329–334.

    Article  CAS  PubMed  Google Scholar 

  24. Haase, J., Killian, A. M., Magnani, F., and Williams, C. (2001) Biochem. Soc. Trans., 29, 722–728.

    Article  CAS  PubMed  Google Scholar 

  25. Tetrault, S., Chever, O., Sik, A., and Amzica, F. (2008) Eur. J. Neurosci., 28, 1330–1341.

    Article  PubMed  Google Scholar 

  26. Konofagou, E. E., Tung, Y. S., Choi, J., Deffieux, T., Baseri, B., and Vlachos, F. (2012) Curr. Pharm. Biotechnol., [Epub ahead of print].

  27. Neuwelt, E. A., Bauer, B., Fahlke, C., Fricker, G., Iadecola, C., Janigro, D., Leybaert, L., Molnar, Z., O’Donnell, M. E., Povlishock, J. T., Saunders, N. R., Sharp, F., Stanimirovic, D., Watts, R. J., and Drewes, L. R. (2011) Nat. Rev. Neurosci., 12, 169–182.

    Article  CAS  PubMed  Google Scholar 

  28. Su, Y., and Sinko, P. J. (2006) Expert Opin. Drug Deliv., 3, 419–435.

    Article  CAS  PubMed  Google Scholar 

  29. Simansky, K. J., Bourbonais, K. A., and Smith, G. P. (1985) Pharmacol. Biochem. Behav., 23, 253–258.

    Article  CAS  PubMed  Google Scholar 

  30. Lagrange, P., Romero, I. A., Minn, A., and Revest, P. A. (1999) Free Radic. Biol. Med., 27, 667–672.

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein, N. (2002) Biochemistry (Moscow), 67, 161–170.

    Article  CAS  Google Scholar 

  32. McCorvy, J. D., Watts, V. J., and Nichols, D. E. (2012) Psychopharmacology (Berl.), January 6, [Epub ahead of print].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Goldstein.

Additional information

Original Russian Text © N. Goldstein, R. Goldstein, D. Terterov, A. A. Kamensky, G. I. Kovalev, Yu. A. Zolotarev, G. N. Avakyan, S. Terterov, 2012, published in Biokhimiya, 2012, Vol. 77, No. 5, pp. 525–532.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, N., Goldstein, R., Terterov, D. et al. Blood-brain barrier unlocked. Biochemistry Moscow 77, 419–424 (2012). https://doi.org/10.1134/S000629791205001X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791205001X

Key words

Navigation