Skip to main content
Log in

Novel inhibitors of glyceraldehyde-3-phosphate dehydrogenase: Covalent modification of NAD-binding site by aromatic thiols

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) is a glycolytic enzyme catalyzing the formation of 1,3-diphosphoglycerate from glyceraldehyde-3-phosphate and inorganic phosphate. In cooperation with E3 ubiquitin-kinase Siah1, GAPDH directly participates in the apoptotic death of neurons in Parkinson’s disease. Potential GAPDH inhibitors were screened in silico, and three compounds with high affinity to the NAD-binding site and theoretically capable of forming a disulfide bond with amino acid residue Cys149 were found among cysteine and glutathione derivatives. The inhibitory effect of these compounds was tested on GAPDH from rabbit muscles using isothermal calorimetry and kinetic methods. As a result of experimental screening, we selected two compounds that inhibit GAPDH by forming disulfide bonds with the Cys149 residue in the enzyme active site. Since Cys149 is the key residue not only for the catalyzed reaction, but also for interaction with Siah1, the compounds can be assumed to inhibit the formation of the proapoptotic complex GAPDH-Siah1 and therefore have potential effect against Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

References

  1. Buehner, M., Ford, G. C., Olsen, K. W., Moras, D., and Rossman, M. G. (1974) J. Mol. Biol., 90, 25–49.

    Article  CAS  PubMed  Google Scholar 

  2. Mohr, S., Stamler, J. S., and Brune, B. (1994) FEBS Lett., 348, 223–227.

    Article  CAS  PubMed  Google Scholar 

  3. Schmalhausen, E. V., Pleten’, A. P., and Muronetz, V. I. (2003) Biochem. Biophys. Res. Commun., 308, 492–496.

    Article  CAS  PubMed  Google Scholar 

  4. Polgar, L. (1975) Eur. J. Biochem., 51, 63–71.

    Article  CAS  PubMed  Google Scholar 

  5. Stallcup, W. B., and Koshland, D. E., Jr. (1973) J. Mol. Biol., 80, 41–62.

    Article  CAS  PubMed  Google Scholar 

  6. Hyslop, P. A., Hinshaw, D. B., Halsey, W. A., Schraufstatter, I. U., Sauerheber, R. D., Spragg, R. G., Jackson, J. H., and Cochrane, C. G. (1988) J. Biol. Chem., 263, 1665–1675.

    CAS  PubMed  Google Scholar 

  7. Sirover, M. A. (1999) Biochim. Biophys. Acta, 1432, 159–184.

    CAS  PubMed  Google Scholar 

  8. Mazzola, J. L., and Sirover, M. A. (2001) J. Neurochem., 76, 442–449.

    Article  CAS  PubMed  Google Scholar 

  9. Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N., and Chuang, D. M. (1998) Mol. Pharmacol., 53, 701–707.

    CAS  PubMed  Google Scholar 

  10. Arutyunova, E. I., Danshina, P. V., Domnina, L. V., Pleten, A. P., and Muronetz, V. I. (2003) Biochem. Biophys. Res. Commun., 307, 547–552.

    Article  CAS  PubMed  Google Scholar 

  11. Andringa, G., van Oosten, R. V., Unger, W., Hafmans, T. G., Veening, J., Stoof, J. C., and Cools, A. R. (2000) Eur. J. Neurosci., 12, 3033–3043.

    Article  CAS  PubMed  Google Scholar 

  12. Waldmeier, P. C., Boulton, A. A., Cools, A. R., Kato, A. C., and Tatton, W. G. (2000) J. Neural Transm. Suppl., 60, 197–214.

    PubMed  Google Scholar 

  13. Jenkins, J. L., and Tanner, J. J. (2006) Acta Crystallogr. D. Biol. Crystallogr., 62(Pt. 3), 290–301.

    Article  PubMed  Google Scholar 

  14. Chuang, D., Hough, C., and Senatorov, V. V. (2005) Annu. Rev. Pharmacol. Toxicol., 45, 269–290.

    Article  CAS  PubMed  Google Scholar 

  15. Scopes, R. K., and Stoter, A. (1982) Meth. Enzymol., 90, 479–490.

    Article  CAS  PubMed  Google Scholar 

  16. Stroganov, O. V., Novikov, F. N., Stroylov, V. S., Kulkov, V., and Chilov, G. G. (2008) J. Chem. Inf. Model., 48, 2371–2385.

    Article  CAS  PubMed  Google Scholar 

  17. Guranda, D. T., Kudryavtsev, P. A., Khimiuk, A. Y., and Švedas, V. K. (2005) J. Chromatogr. A, 1095, 89–93.

    Article  CAS  PubMed  Google Scholar 

  18. Vijlder, J. J. M., Boers, W., and Slater, E. C. (1969) Biochim. Biophys. Acta, 191, 214–220.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Muronetz.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 12, pp. 1662–1669.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM10-165, October 10, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernorizov, K.A., Elkina, J.L., Semenyuk, P.I. et al. Novel inhibitors of glyceraldehyde-3-phosphate dehydrogenase: Covalent modification of NAD-binding site by aromatic thiols. Biochemistry Moscow 75, 1444–1449 (2010). https://doi.org/10.1134/S0006297910120047

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910120047

Key words

Navigation