Skip to main content
Log in

Deformations of the Lie algebra o(5) in characteristics 3 and 2

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

All finite-dimensional simple modular Lie algebras with Cartan matrix fail to have deformations, even infinitesimal ones, if the characteristic p of the ground field is equal to 0 or exceeds 3. If p = 3, then the orthogonal Lie algebra o(5) is one of two simple modular Lie algebras with Cartan matrix that do have deformations (the Brown algebras br(2; α) appear in this family of deformations of the 10-dimensional Lie algebras, and therefore are not listed separately); moreover, the 29-dimensional Brown algebra br(3) is the only other simple Lie algebra which has a Cartan matrix and admits a deformation. Kostrikin and Kuznetsov described the orbits (isomorphism classes) under the action of an algebraic group O(5) of automorphisms of the Lie algebra o(5) on the space H 2(o(5); o(5)) of infinitesimal deformations and presented representatives of the isomorphism classes. We give here an explicit description of the global deformations of the Lie algebra o(5) and describe the deformations of a simple analog of this orthogonal algebra in characteristic 2. In characteristic 3, we have found the representatives of the isomorphism classes of the deformed algebras that linearly depend on the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Kostrikin and M. I. Kuznetsov, “On deformations of classical Lie algebras of characteristic three,” Dokl. Ross. Akad. Nauk 343(3), 299–301 (1995) [Russian Acad. Sci. Dokl. Math. 52 (1), 33–35 (1995)].

    MathSciNet  Google Scholar 

  2. A. N. Rudakov, “Deformations of simple Lie algebras,” Izv. Akad. Nauk SSSR Ser. Mat. 35(5), 1113–1119 (1971) [Math. USSR-Izv. 5 (5), 1120–1126 (1971)].

    MATH  MathSciNet  Google Scholar 

  3. A. Fialowski and D. Fuchs, “Singular deformations of Lie algebras. Example: deformations of the Lie algebra L 1,” in Topics in Singularity Theory,Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 1997), Vol. 180, pp. 77–92; arXiv: math.QA/9706027.

    Google Scholar 

  4. D. B. Fuks [Fuchs], Cohomology of Infinite-Dimensional Lie Algebras (Nauka, Moscow, 1984; Consultants Bureau, New York, 1986).

    Google Scholar 

  5. B. L. Feigin and D. B. Fuks, “Cohomology of Lie groups and Lie algebras,” in: Current Problems in Mathematics: Fundamental Directions Vol. 21, Itogi Nauki i Tekhniki [Progress in Science and Technology], Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. [VINITI], Moscow, 1988, pp. 121–209 [B. L. Feigin and D. B. Fuks, Cohomologies of Lie Groups and Lie Algebras. Lie groups and Lie algebras, II, Encyclopaedia Math. Sci., 21, Springer, Berlin, 2000, pp. 125–223].

  6. D. A. Leites and I.M. Shchepochkina, “How should an antibracket be quantized?” Teoret. Mat. Fiz. 126(3), 339–369 (2001) [Theoret. and Math. Phys. 126 (3), 281–306 (2001)]; arXiv: math-ph/0510048.

    MathSciNet  Google Scholar 

  7. S. Bouarroudj, P. Grozman, and D. Leites, “Classification of Finite DimensionalModular Lie Superalgebras with Indecomposable Cartan Matrix,” SIGMA 5, 060 (2009); arXiv: math.RT/0710.5149.

    MathSciNet  Google Scholar 

  8. S. Bouarroudj, P. Grozman, A. Lebedev, and D. Leites, “Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix,” Homology, Homotopy Appl. 12(1), 237–278 (2010); arXiv: math.RT/0911.0243.

    MATH  MathSciNet  Google Scholar 

  9. A. I. Kostrikin, “A parametric family of simple Lie algebras,” Izv. Akad. Nauk SSSR Ser. Mat. 34(4), 744–756 (1970) [Math. USSR-Izv. 4, 751–764 (1970)].

    MathSciNet  Google Scholar 

  10. B. Yu. Veisfeiler [Weisfeiler] and V. G. Kats [Kac], “Exponentials in Lie algebras of characteristic p,” Izv. Akad. Nauk SSSR Ser. Mat. 35(4), 762–788 (1971) [Math. USSR-Izv. 5, 777–803 (1971)].

    MathSciNet  Google Scholar 

  11. A. N. Rudakov and I. R. Shafarevich [Šafarevič], “Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic,” Mat. Zametki 2(5), 439–454 (1967) (in Russian).

    MATH  MathSciNet  Google Scholar 

  12. I. M. Shchepochkina, “How to realize a Lie algebra by vector fields,” Teoret. Mat. Fiz. 147(3), 450–469 (2006) [Theoret. and Math. Phys. 147 (3), 821–838 (2006)]. arXiv: math.RT/0509472.

    MathSciNet  Google Scholar 

  13. P. Grozman and D. Leites, “Structures of G(2) type and nonintegrable distributions in characteristic p,” Lett. Math. Phys. 74(3), 229–262 (2005); arXiv: math.RT/0509400.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. E. Frohardt and R. L. Griess jr., “Automorphisms of modular Lie algebras,” Nova J. Algebra Geom. 1(4), 339–345 (1992).

    MATH  MathSciNet  Google Scholar 

  15. S. Bouarroudj, P. Grozman and D. Leites, Infinitesimal Deformations of Symmetric Simple Modular Lie Algebras and Lie Superalgebras, arXiv: math.RT/0807.3054.

  16. D. Fuchs and L. Lang, Massey Products and Deformations, arXiv: math.QA/9602024.

  17. A. Fialowski, “An example of formal deformations of Lie algebras,” in Deformation Theory of Algebras and Structures and Applications, NATOAdv. Sci. Inst. Ser. CMath. Phys. Sci., Il Ciocco, 1986 (Kluwer Acad. Publ., Dordrecht, 1988), Vol. 247, pp. 375–401.

    Google Scholar 

  18. D.V. Millionshchikov, “Massey products in graded Lie algebra cohomology,” Proceedings of the Conference “Contemporary Geometry and Related Topics”, Belgrad, 2005 (Belgrad Univ., 2007).

  19. A. Lebedev, D. Leites and I. Shereshevskii, “Lie superalgebra structures in C (n; n) and H (n; n),” in Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 2005), Vol. 213, pp. 157–172; Lie Superalgebra Structures in Cohomology Spaces of Lie Algebras with Coefficients in the Adjoint Representation, arXiv: math.KT/0404139.

    Google Scholar 

  20. P. Grozman and D. Leites, “Lie superalgebra structures in H*(g; g),” Czechoslovak J. Phys. 54(11), 1313–1319 (2004); arXiv: math.RT/0509469.

    Article  MathSciNet  Google Scholar 

  21. P. Grozman, SuperLie, www.equaonline.com/math/SuperLie.

  22. I. Cunha and A. Elduque, “An extended Freudenthal magic square in characteristic 3,” J. Algebra 317(2), 471–509 (2007); arXiv: math.RA/0605379.

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu. V. Billig, “Modular affine Lie algebras,” Mat. Sb. 181(8), 1130–1143 (1990) [Math. USSR-Sb. 70 (2), 573–586 (1991)].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bouarroudj.

Additional information

Original Russian Text © S. Bouarroudj, A. V. Lebedev, F. Wagemann, 2011, published in Matematicheskie Zametki, 2011, Vol. 89, No. 6, pp. 808–824.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouarroudj, S., Lebedev, A.V. & Wagemann, F. Deformations of the Lie algebra o(5) in characteristics 3 and 2. Math Notes 89, 777–791 (2011). https://doi.org/10.1134/S0001434611050191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434611050191

Keywords

Navigation