Skip to main content
Log in

Radiation friction in fractal clusters

  • Physical and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The classical problem of radiation damping is formulated for fractal clusters in terms of interference of radiation friction forces within a small number of aggregated particles, with their interactions being described in the dipole-dipole approximation. The general theory is developed for spherical particles with arbitrary sizes. For particular configurations, the interference nature of the radiation widths of the normal dipole oscillations of aggregates is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Mandelstam, Ann. Phys. (Leipzig) 23, 626 (1907); in Complete Works (Akad. Nauk SSSR, Moscow, 1948), Vol. 1, pp. 109–124.

    ADS  Google Scholar 

  2. L. I. Mandelstam, Phys. Z. 8, 608 (1907); in Complete Works (Akad. Nauk SSSR, Moscow, 1948), Vol. 1, pp. 125–130.

    Google Scholar 

  3. M. Planck, Sitzungsber. K. Preuss. Akad. Wiss. 24, 474 (1902).

    Google Scholar 

  4. I. I. Sobel’man, Usp. Fiz. Nauk 172, 85 (2002).

    Article  Google Scholar 

  5. R. H. Dicke, Phys. Rev. 89, 472 (1953).

    Article  ADS  Google Scholar 

  6. V. A. Alekseev, A. V. Vinogradov, and I. I. Sobel’man, Usp. Fiz. Nauk 102, 43 (1970) [Sov. Phys. Usp. 13, 576 (1970)].

    Google Scholar 

  7. V. M. Shalaev, Phys. Rep. 272, 61 (1996).

    Article  ADS  Google Scholar 

  8. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon Press, Oxford, 1964; Nauka, Moscow, 1970).

    Google Scholar 

  9. D. V. Sivukhin, Optics (Fizmatgiz, Moscow, 1980) [in Russian].

    Google Scholar 

  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  11. V. M. Shalaev, in Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, 2000), Springer Tracts Mod. Phys., Vol. 158.

    Google Scholar 

  12. V. A. Markel, J. Mod. Opt. 39, 853 (1992).

    Article  ADS  Google Scholar 

  13. V. A. Markel, J. Opt. Soc. Am. B 12, 1783 (1995).

    Article  ADS  Google Scholar 

  14. S. V. Perminov, S. G. Rautian, and V. P. Safonov, Issled. Rossii 195, 2311 (2003).

    Google Scholar 

  15. S. V. Perminov, S. G. Rautian, and V. P. Safonov, Zh. Éksp. Teor. Fiz. 125, 789 (2004) [JETP 98, 691 (2004)].

    Google Scholar 

  16. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  17. S. V. Perminov, S. G. Rautian, and V. P. Safonov, Opt. Spektrosk. 95, 447 (2003) [Opt. Spectrosc. 95, 416 (2003)].

    Article  Google Scholar 

  18. L. I. Mandelstam, Phys. Z. 9, 308 (1908); in Complete Works (Akad. Nauk SSSR, Moscow, 1948), Vol. 1, pp. 162–169.

    Google Scholar 

  19. H. A. Lorentz, Proc. R. Acad. Sci. Amsterdam 13, 92 (1910).

    Google Scholar 

  20. J. Knoester and F. S. Spano, in J-Aggregates, Ed. by T. Kabayasi (World Sci., Singapore, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 97, No. 3, 2004, pp. 444–452.

Original Russian Text Copyright © 2004 by Rautian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautian, S.G. Radiation friction in fractal clusters. Opt. Spectrosc. 97, 416–423 (2004). https://doi.org/10.1134/1.1803647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1803647

Keywords

Navigation