Skip to main content
Log in

The role of alloying effects in the formation of electronic structure of unordered Group III nitride solid solutions

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of compositional and positional disorder on electronic properties of (Group III)-nitride solid solutions with the wurtzite structure was studied by the method of a model empirical pseudopotential using 32-atom supercells. The calculated values of the band-gap bowing parameter are found to be equal to 0.44, 2.72, and 4.16 for AlGaN, InGaN, InAlN, respectively. It is shown that the major contribution to the band-gap bowing parameter is made by the compositional disorder, whereas the bond-length relaxation reduces the effect of compositional disorder and the effects of the volume deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, London, 2000).

    Google Scholar 

  2. M. Goano, E. Bellotti, E. Ghillino, et al., J. Appl. Phys. 88, 6467 (2000).

    ADS  Google Scholar 

  3. Z. Dridi, B. Bouhafs, and P. Ruterana, Phys. Status Solidi C, No. 1, 315 (2002).

  4. L. K. Teles, L. M. R. Scolfaro, J. Furthmuller, et al., Phys. Status Solidi B 234, 956 (2002).

    ADS  Google Scholar 

  5. V. G. Deibuk, A. V. Voznyi, and M. M. Sletov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 35 (2000) [Semiconductors 34, 35 (2000)].

    Google Scholar 

  6. M. Leroux, S. Dalmasso, F. Natali, et al., Phys. Status Solidi B 234, 887 (2002).

    ADS  Google Scholar 

  7. V. Davydov, A. Klochikhin, V. Emtsev, et al., Phys. Status Solidi B 234, 787 (2002).

    ADS  Google Scholar 

  8. S. Stepanov, W. N. Wang, B. Yavich, et al., MRS Internet J. Nitride Semicond. Res. 6, 6 (2001).

    Google Scholar 

  9. K. P. O’Donnel, J. F. W. Mosselmans, R. W. Martin, et al., J. Phys.: Condens. Matter 13, 6977 (2001).

    ADS  Google Scholar 

  10. M. J. Lukitsch, Y. V. Danylyuk, V. M. Naik, et al., Appl. Phys. Lett. 79, 632 (2001).

    Article  ADS  Google Scholar 

  11. T. Peng, J. Piprek, G. Qiu, et al., Appl. Phys. Lett. 71, 2439 (1997).

    ADS  Google Scholar 

  12. S. Pugh, D. Dugdale, S. Brand, and R. Abram, Semicond. Sci. Technol. 14, 23 (1999).

    Article  ADS  Google Scholar 

  13. Y. Yeo, T. Chong, and M. Li, J. Appl. Phys. 83, 1429 (1998).

    Article  ADS  Google Scholar 

  14. M. Goano, E. Bellotti, E. Ghillino, et al., J. Appl. Phys. 88, 6476 (2000).

    ADS  Google Scholar 

  15. A. Rubio, J. L. Corkill, M. L. Cohen, et al., Phys. Rev. B 48, 11810 (1993).

  16. R. Haydoc, W. Heine, and M. J. Kelly, J. Phys. C 15, 2891 (1982).

    Google Scholar 

  17. A. Zaoui, J. Phys.: Condens. Matter 14, 4025 (2002).

    Article  ADS  Google Scholar 

  18. G. Srivastava, J. Martins, and A. Zunger, Phys. Rev. B 31, 2561 (1985).

    Article  ADS  Google Scholar 

  19. F. Grosse and J. Neugebauer, Phys. Rev. B 63, 085207 (2001).

    Google Scholar 

  20. P. R. C. Kent, L. Bellaiche, and A. Zunger, Semicond. Sci. Technol. 17, 851 (2002).

    Article  ADS  Google Scholar 

  21. T. Matilla, L.-W. Wang, and A. Zunger, Phys. Rev. B 59, 15270 (1999).

    Google Scholar 

  22. C. Pryor, J. Kim, L. W. Wang, et al., J. Appl. Phys. 83, 2548 (1998).

    Article  ADS  Google Scholar 

  23. V. G. Deibuk, A. V. Voznyi, M. M. Sletov, and A. M. Sletov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 398 (2002) [Semiconductors 36, 398 (2002)].

    Google Scholar 

  24. D. R. Hamman, Phys. Rev. B 40, 2980 (1989).

    ADS  Google Scholar 

  25. Z. H. Levine and S. G. Louie, Phys. Rev. B 25, 6310 (1982).

    Article  ADS  Google Scholar 

  26. W. R. L. Lambrecht and M. Prikhodko, Solid State Commun. 121, 549 (2002).

    Article  Google Scholar 

  27. I. Vurgaftman and J. Meyer, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  28. J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984).

    Article  ADS  Google Scholar 

  29. A. Garcia and M. L. Cohen, Phys. Rev. B 47, 4215 (1993).

    Article  ADS  Google Scholar 

  30. O. Ambacher, J. Majewski, C. Miskys, et al., J. Phys.: Condens. Matter 14, 3399 (2002).

    Article  ADS  Google Scholar 

  31. J. Wu, W. Walukiewicz, K. M. Yu, et al., Appl. Phys. Lett. 80, 4741 (2002).

    ADS  Google Scholar 

  32. A. Wall, Y. Gao, A. Raisanen, et al., Phys. Rev. B 43, 4988 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 3, 2004, pp. 316–321.

Original Russian Text Copyright © 2004 by Voznyy, Deibuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voznyy, A.V., Deibuk, V.G. The role of alloying effects in the formation of electronic structure of unordered Group III nitride solid solutions. Semiconductors 38, 304–309 (2004). https://doi.org/10.1134/1.1682332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1682332

Keywords

Navigation