Skip to main content
Log in

The synthesis of organic molecules in a laser plasma similar to the plasma that emerges in hypervelocity collisions of matter at the early evolutionary stage of the Earth and in interstellar clouds

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Ions of organic molecules and polymers as well as multiply ionized hydrocarbons were synthesized and detected with a time-of-flight mass analyzer in laboratory experiments simulating with a laser the plasma processes that accompany a hypervelocity micrometeorite impact on the target surface. A hypervelocity impact of micrometeorites moving at velocities of 80 km s−1 on a inorganic target was simulated with a Q-switched laser. The laser provided a power density of 109−1011 W cm−2 in a spot with an impact diameter of 30–150 μm for a pulse duration of 7–10 ns and a laser plasma electron density of 105−106 K. The ions of organic compounds are shown to be synthesized mostly during the free expansion of a hot laser plasma at the stage of its cooling and recombination if, initially, the plasma was completely atomized and ionized. Molecular ions have high yields only for a carbon target. The results obtained indicate that organic or other polyatomic compounds can be abiogenically synthesized in intense hypervelocity meteorite impacts on the Earth’s surface at the early stage of its formation during meteorite showers and in hypervelocity collisions of dust particles in interstellar molecular clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Impact Waves and High-Temperature Hydrodynamic Phenomena, 2nd ed. (Nauka, Moscow, 1966; Academic, New York, 1966).

    Google Scholar 

  2. J. F. Friichtenicht and J. C. Slattery, Ionization Associated with Hypervelocity Impact, NASA TN D-2091 (1963).

  3. G. G. Managadze, Preprint No. PR-2037, IKI RAN (Inst. for Space Research, Russian Academy of Sciences, Moscow, 2001).

  4. R. Z. Sagdeev, G. G. Managadze, A. V. Tur, and V. V. Yanovskii, in Proceedings of International Conference on the FOBOS Project (Akad. Nauk SSSR, Moscow, 1986), p. 129.

    Google Scholar 

  5. K. Kobayashi and T. Saito, in The Role of Radiation in the Origin and Evolution of the Life, Ed. by M. Akabosh, N. Full, and R. Neverro-Gonzales (Kyoto Univ. Press, Kyoto, 2000), p. 25.

    Google Scholar 

  6. H. J. Goldschmidt and T. Owen, The Search for Life in the Universe (Benjamin, Menlo Park, 1980; Mir, Moscow, 1983).

    Google Scholar 

  7. S. Miller and L. Orgel, The Origins of Life on Earth (Prentice Hall, Englewood Cliffs, N.J., 1974).

    Google Scholar 

  8. L. Spitzer, Jr., Physical Processes in Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  9. N. G. Bochkarev, Fundamentals of Physics of the Interstellar Medium (Mosk. Gos. Univ., Moscow, 1992).

    Google Scholar 

  10. A. G. G. M. Tielens, C. F. McKee, G. G. Seab, and D. J. Holltnbach, Astrophys. J. 431, 321 (1994).

    Article  ADS  Google Scholar 

  11. N. V. Voshchinnikov, Itogi Nauki Tekh., Ser.: Issled. Kosm. Prostranstva 25, 98 (1986).

    Google Scholar 

  12. W. Knabe and F. R. Kruger, Z. Naturforsch. A 37, 1335 (1982).

    Google Scholar 

  13. P. R. Ratcliff, M. J. Burchell, M. J. Cole, et al., Int. J. Impact Eng. 20, 663 (1997).

    Google Scholar 

  14. R. Roybal, S. Stein, S. M’iglionico, and J. Shively, Int. J. Impact Eng. 17, 707 (1995).

    Google Scholar 

  15. P. R. Ratcliff, F. Gogu, E. Grun, and R. Srama, Adv. Space Res. 17(12), 111 (1996).

    ADS  Google Scholar 

  16. E. M. Drobyshevski, B. G. Zhukov, V. A. Sakharov, et al., Int. J. Impact Eng. 17, 285 (1995).

    Google Scholar 

  17. B. K. Dallman, E. Grun, and J. Kissel, Planet. Space Sci. 25, 135 (1977).

    ADS  Google Scholar 

  18. J. Kissel, R. Z. Sagdeev, J. L. Bertaux, et al., Nature 321(6067), 280 (1986).

    ADS  Google Scholar 

  19. D. A. Mendis, in Exploration of Halley’s Comet, Ed. by M. Growing, F. Praderie, and R. Reinhard (Springer, Berlin, 1988), p. 939.

    Google Scholar 

  20. R. Reinhard, in Exploration of Halley’s Comet, Ed. by M. Growing, F. Praderie, and R. Reinhard (Springer, Berlin, 1988), p. 950.

    Google Scholar 

  21. R. Z. Sagdeev, J. Kissel, E. N. Evlanov, et al., Astron. Astrophys. 187, 179 (1987).

    ADS  Google Scholar 

  22. R. Z. Sagdeev, S. I. Anisimov, A. A. Galeev, et al., Adv. Space Res. 2(12), 133 (1983).

    ADS  Google Scholar 

  23. K. Hornung, Yu. G. Malama, and K. Thoma, Adv. Space Res. 17(12), 77 (1996).

    ADS  Google Scholar 

  24. V. V. Kostin, V. E. Fortov, I. K. Krasyuk, et al., Teplofiz. Vys. Temp. 35, 962 (1997).

    Google Scholar 

  25. A. V. Petrovtsev, V. Yu. Politov, and A. T. Sapozhnikov, Preprint No. 135, RFYaTs-VNIITF (All-Russia Research Inst. of Technical Physics, Russian Federal Nuclear Center, Snezhinsk, 1998).

  26. E. N. Avronin, N. N. Anuchina, V. V. Gadzhieva, et al., Preprint No. 177, IPM AN SSSR (Inst. of Applied Mathematics, USSR Academy of Sciences, Moscow, 1985).

  27. E. N. Avronin, N. N. Anuchina, V. V. Gadzhieva, et al., Fiz. Goreniya Vzryva 32, 117 (1996).

    Google Scholar 

  28. J. Kissel and F. R. Krueger, Appl. Phys. A 42, 69 (1987).

    Article  Google Scholar 

  29. D. Guring, in High-Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970; Mir, Moscow, 1973), p. 468.

    Google Scholar 

  30. K. Hornung, Yu. Malama, and Kh. Kestenboim, Astrophys. Space Sci. 279, 256 (2000).

    Google Scholar 

  31. O. A. Bykovskii and I. N. Nevolin, Laser Mass Spectrometry (Énergoizdat, Moscow, 1985).

    Google Scholar 

  32. G. F. Tonon, Acad. Sci., Paris 262, 1413 (1965).

    Google Scholar 

  33. N. G. Basov, V. A. Boiko, and Yu. A. Drozhbin, Dokl. Akad. Nauk SSSR 192, 1248 (1970) [Sov. Phys. Dokl. 15, 576 (1970)].

    Google Scholar 

  34. G. G. Managadze and I. M. Podgornyi, Geomagn. Aeron. 8, 609 (1968).

    Google Scholar 

  35. G. G. Managadze and I. M. Podgornyi, Dokl. Akad. Nauk SSSR 180, 1333 (1968) [Sov. Phys. Dokl. 13, 593 (1968)].

    Google Scholar 

  36. G. G. Managadze and I. Y. Shutyaev, in Laser Ionization Mass Analysis, Ed. by A. Vertes, R. Gijbels, and F. Adams (Wiley, New York, 1993), p. 505, Chem. Anal. Ser., Vol. 124.

    Google Scholar 

  37. Yu. A. Bykovskii, G. I. Zhuravlev, V. I. Belousov, et al., in Production and Analysis of Materials of Special Purity, Ed. by A. D. Zorin (Nauka, Moscow, 1979), p. 276.

    Google Scholar 

  38. C. R. Phipps and R. W. Dreyfus, Chem. Anal. (N.Y.) 124, 369 (1993).

    Google Scholar 

  39. G. G. Managadze and N. G. Managadze, Zh. Tekh. Fiz. 69(10), 138 (1999) [Tech. Phys. 44, 1253 (1999)].

    Google Scholar 

  40. N. G. Managadze, G. G. Managadze, and A. Ziegler, in Proceedings of 45th Conference of ASMS (Palm Springs, USA, 1997), p. 1243.

    Google Scholar 

  41. G. G. Managadze and N. G. Managadze, Preprint No. Pr-1962, IKI RAN (Inst. for Space Research, Russian Academy of Sciences, Moscow, 1997), p. 22.

  42. W. B. Brinckerhoff, G. G. Managadze, R. W. McEntire, et al., Rev. Sci. Instrum. 71, 536 (2000).

    Article  ADS  Google Scholar 

  43. G. G. Managadze, RF Patent No. 1732396 (1992), Byull. Izobret., No. 17 (1992).

  44. G. G. Managadze and N. G. Managadze, RF Patent No. 2096861 (1997), Byull. Izobret., No. 32 (1997).

  45. G. G. Managadze, Universal Multi-Purpose Transportable Mass-Spectrometric Complex, Report (APTI, Washington, 1992).

    Google Scholar 

  46. S. R. Andrews, F. M. Harris, and D. E. Parry, Chem. Phys. 166, 69 (1992).

    Article  Google Scholar 

  47. H. C. Urey, Proc. Natl. Acad. Sci. USA 38, 351 (1952).

    ADS  Google Scholar 

  48. S. L. Miller, in Mineral Deposits and Involution of the Biosphere, Ed. by H. D. Holland and M. Schidlowski (Springer, Berlin, 1982), p. 155.

    Google Scholar 

  49. Yu. A. Bykovskii, N. M. Vasil’ev, I. D. Laptev, et al., Zh. Tekh. Fiz. 44, 2023 (1974) [Sov. Phys. Tech. Phys. 19, 1258 (1974)].

    Google Scholar 

  50. J. Kissel and F. R. Krueger, Nature 326(6115), 755 (1987).

    Article  ADS  Google Scholar 

  51. R. Zhang, Y. Achiba, J. K. Fisher, et al., J. Phys. Chem 103, 9450 (1999).

    Google Scholar 

  52. L. Laska, J. Krasa, L. Juha, et al., Carbon 34, 363 (1996).

    Google Scholar 

  53. C. Sagan and B. N. Khare, Science 173, 417 (1971).

    ADS  Google Scholar 

  54. V. I. Moroz and L. M. Mukhin, Kosm. Issled. 5(6), 901 (1977).

    Google Scholar 

  55. L. M. Mukhin, Nature 251, 50 (1974).

    Article  Google Scholar 

  56. T. Matsu and Y. Abe, Nature 319, 303 (1986).

    ADS  Google Scholar 

  57. S. L. Miller and H. C. Urey, Science 130, 245 (1959).

    ADS  Google Scholar 

  58. A. Bar-Nun, N. Bar-Nun, S. H. Bauer, and C. Sagan, Science 168, 470 (1970).

    ADS  Google Scholar 

  59. S. Miyakawa, K. Kobayashi, and A. B. Sawaoka, Jpn. J. Appl. Phys. 36, 4481 (1997).

    Article  Google Scholar 

  60. S. Miyakawaet, K. Kobayashi, and A. B. Sawaoka, J. Am. Chem. Soc. 121, 8144 (1999).

    Google Scholar 

  61. L. M. Mukhin, M. V. Gerasimov, and E. N. Safonova, Nature 340, 46 (1989).

    Article  ADS  Google Scholar 

  62. M. V. Gerasimov, L. M. Mukhin, and É. N. Safonova, Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 119 (1991).

  63. V. S. Strel’nitskii, in Little Encyclopedia: Physics of Space (Sovetskaya Éntsiklopediya, Moscow, 1989), p. 415.

    Google Scholar 

  64. G. G. Managadze, in Proceedings of 27th General Assembly of the European Geophysical Society, Nice (2002), Abstract EGS02-A-06871, p. 334.

  65. M. Stubig, R. Srama, E. Grun, and G. Schafer, in Proceedings of 27th General Assembly of the European Geophysical Society, Nice (2002), Abstract EGS02-A-01364, p. 274.

  66. G. G. Managadze, Geophys. Res. Abstr. 3, 7595 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 124, No. 1, 2003, pp. 55–69.

Original Russian Text Copyright © 2003 by Managadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Managadze, G.G. The synthesis of organic molecules in a laser plasma similar to the plasma that emerges in hypervelocity collisions of matter at the early evolutionary stage of the Earth and in interstellar clouds. J. Exp. Theor. Phys. 97, 49–60 (2003). https://doi.org/10.1134/1.1600796

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1600796

Keywords

Navigation