Skip to main content
Log in

Electrodynamical treatment of the electron-hole long-range exchange interaction in semiconductor nanocrystals

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We show that the contribution to the fine structure of the ground exciton level in a semiconductor nanocrystal due to the long-range part of the electron-hole exchange interaction can be equivalently described as arising from the mechanical exciton interaction with the exciton-induced macroscopic longitudinal electric field. Particular cases of nanocrystals with cubic and wurtzite crystal lattice in the strong confinement regime are studied taking into account the complex structure of the valence band. A simplified model accounting for the exciton ground-level splitting and exploiting an effective local scalar susceptibility is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Nirmal, D. J. Norris, M. Kuno, et al., Phys. Rev. Lett. 75, 3728 (1995).

    Article  ADS  Google Scholar 

  2. D. J. Norris, Al. L. Efros, M. Rosen, and M. G. Bawendi, Phys. Rev. B 53, 16347 (1996).

  3. Al. L. Efros, M. Rosen, M. Kuno, et al., Phys. Rev. B 54, 4843 (1996).

    Article  ADS  Google Scholar 

  4. M. Chamarro, C. Gourdon, P. Lavallard, et al., Phys. Rev. B 53, 1336 (1996).

    Article  ADS  Google Scholar 

  5. M. Chamarro, M. Dib, C. Gourdon, et al., in Proceedings of Mater. Res. Soc. Symposium (Boston, 1996), p. 396.

  6. U. Woggon, F. Gindele, O. Wind, and C. Klingshirn, Phys. Rev. B 54, 1506 (1996).

    ADS  Google Scholar 

  7. G. E. Pikus and G. L. Bir, Zh. Éksp. Teor. Fiz. 60, 195 (1971) [Sov. Phys. JETP 33, 108 (1971)]; Zh. Éksp. Teor. Fiz. 62, 324 (1972) [Sov. Phys. JETP 35, 174 (1972)].

    Google Scholar 

  8. G. L. Bir and G. E. Pikus, Symmetry and Strain-induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1974), Chap. 4.

    Google Scholar 

  9. M. M. Denisov and V. P. Makarov, Phys. Status Solidi B 56, 9 (1973).

    Google Scholar 

  10. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Nauka, Moscow, 1979; Springer, Berlin, 1984).

    Google Scholar 

  11. S. V. Goupalov, E. L. Ivchenko, and A. V. Kavokin, Zh. Éksp. Teor. Fiz. 113, 703 (1998) [JETP 86, 388 (1998)].

    Google Scholar 

  12. K. Cho, J. Phys. Soc. Jpn. 68, 683 (1999).

    Article  Google Scholar 

  13. S. V. Goupalov and E. L. Ivchenko, J. Cryst. Growth 184/185, 393 (1998); Acta Phys. Pol. A 94, 341 (1998).

    Google Scholar 

  14. S. V. Goupalov and E. L. Ivchenko, Fiz. Tverd. Tela (St. Petersburg) 42, 1976 (2000) [Phys. Solid State 42, 2030 (2000)].

    Google Scholar 

  15. S. V. Goupalov, E. L. Ivchenko, and A. V. Kavokin, Superlattices Microstruct. 23, 1209 (1998).

    Google Scholar 

  16. A. Franceschetti, L. W. Wang, H. Fu, and A. Zunger, Phys. Rev. B 58, 13367 (1998).

    Google Scholar 

  17. F. Bassani and G. Pastori Parravicini, Electronic States and Optical Transitions in Solids (Pergamon, Oxford, 1975; Nauka, Moscow, 1982).

    Google Scholar 

  18. K. Cho, Phys. Rev. B 14, 4463 (1976).

    Article  ADS  Google Scholar 

  19. T. Takagahara, Phys. Rev. B 47, 4569 (1993).

    ADS  Google Scholar 

  20. S. V. Goupalov and E. L. Ivchenko, Fiz. Tverd. Tela (St. Petersburg) 43, 1791 (2001) [Phys. Solid State 43, 1867 (2001)].

    Google Scholar 

  21. S. Lee, L. Jönsson, J. W. Wilkins, et al., Phys. Rev. B 63, 195318 (2001).

  22. H. Ajiki and K. Cho, Phys. Rev. B 62, 7402 (2000).

    Article  ADS  Google Scholar 

  23. A. I. Ekimov, A. A. Onushchenko, M. E. Raikh, and Al. L. Efros, Zh. Éksp. Teor. Fiz. 90, 1795 (1986) [Sov. Phys. JETP 63, 1054 (1986)].

    Google Scholar 

  24. K. Cho, H. Ajiki, and T. Tsuji, Phys. Status Solidi B 224, 735 (2001).

    ADS  Google Scholar 

  25. H. Ajiki and K. Cho, in Proceedings of International Conference EXCON2000, Ed. by K. Cho and A. Matsui (World Sci., Singapore, 2001), p. 177.

    Google Scholar 

  26. D. Schechter, J. Phys. Chem. Solids 23, 237 (1962).

    MATH  Google Scholar 

  27. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Google Scholar 

  28. Y. Fu, M. Willander, E. L. Ivchenko, and A. A. Kiselev, Phys. Rev. B 55, 9872 (1997).

    ADS  Google Scholar 

  29. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena, 2nd ed. (Springer, Berlin, 1997).

    Google Scholar 

  30. P. Lavallard, J. Cryst. Growth 184/185, 352 (1998).

    Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959; Pergamon Press, Oxford, 1960).

    Google Scholar 

  32. P. Lavallard, M. Rosenbauer, and T. Gacoin, Phys. Rev. A 54, 5450 (1996).

    Article  ADS  Google Scholar 

  33. Al. L. Efros, Phys. Rev. B 46, 7448 (1992).

    Article  ADS  Google Scholar 

  34. P. Lavallard, G. Lamouche, and S. V. Goupalov (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Fizika Tverdogo Tela, Vol. 45, No. 4, 2003, pp. 730–741.

Original English Text Copyright © 2003 by Goupalov, Lavallard, Lamouche, Citrin.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goupalov, S.V., Lavallard, P., Lamouche, G. et al. Electrodynamical treatment of the electron-hole long-range exchange interaction in semiconductor nanocrystals. Phys. Solid State 45, 768–781 (2003). https://doi.org/10.1134/1.1569020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1569020

Keywords

Navigation