Skip to main content
Log in

In situ study of the mechanism of formation of pressure-densified Sio2 glasses

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The volume of glassy a-SiO2 upon compression to 9 GPa was measured in situ at high temperatures up to 730 K and at both pressure buildup and release. It was established that the residual densification of a-SiO2 glass after high-pressure treatment was due to the irreversible transformation accompanied by a small change in volume directly under pressure. The bulk modulus of the new amorphous modification was appreciably higher (80% more than its original value), giving rise to residual densification as high as 18% under normal conditions. It was shown that the transformation pressure shifted to a lower pressure of about 4 GPa with a rise in temperature. A conclusion was drawn about the existence of at least two pressure-induced phase transitions accompanied by structure rearrangement in a-SiO2. A nonequilibrium phase diagram is suggested for glassy SiO2. It accounts for all the presently available experimental data and is confirmed by the existing modeling data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Lyapin, V. V. Brazhkin, E. L. Gromnitskaya, et al., Usp. Fiz. Nauk 169, 1157 (1999).

    Google Scholar 

  2. V. V. Brazhkin, A. G. Lyapin, S. V. Popova, and R. N. Voloshin, New Kinds of Phase Transitions: Transformations in Disordered Substances, Ed. by V. V. Brazhkin et al. (Kluwer, Dordrecht, 2002).

    Google Scholar 

  3. A. G. Lyapin, V. V. Brazhkin, E. L. Gromnitskaya, et al., in New Kinds of Phase Transitions: Transformations in Disordered Substances, Ed. by V. V. Brazhkin et al. (Kluwer, Dordrecht, 2002).

    Google Scholar 

  4. R. J. Hemley, C. T. Prewitt, and K. J. Kingma, in Silica: Physical Behavior, Geochemistry and Materials Applications, Ed. by R. J. Hemley, C. T. Prewitt, and G. V. Gibbs (Mineralogical Society of America, Washington, 1994), Reviews in Mineralogy, Vol. 29, p. 41.

    Google Scholar 

  5. P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).

    Google Scholar 

  6. H. M. Cohen and R. Roy, Phys. Chem. Glasses 6, 149 (1965).

    Google Scholar 

  7. M. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984).

    Article  ADS  Google Scholar 

  8. R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, Phys. Rev. Lett. 57, 747 (1986).

    Article  ADS  Google Scholar 

  9. M. Grimsditch, Phys. Rev. B 34, 4372 (1986).

    Article  ADS  Google Scholar 

  10. Th. Gerber, B. Himmel, H. Lorenz, and D. Stachel, Cryst. Res. Technol. 23, 1293 (1988).

    Google Scholar 

  11. C. Meade, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett. 69, 1387 (1992).

    Article  ADS  Google Scholar 

  12. C. S. Zha, R. J. Hemley, H. K. Mao, et al., Phys. Rev. B 50, 13105 (1994).

  13. E. M. Stolper and T. J. Ahrens, Geophys. Res. Lett. 14, 1231 (1987).

    ADS  Google Scholar 

  14. V. G. Karpov and M. Grimsditch, Phys. Rev. B 48, 6941 (1993).

    ADS  Google Scholar 

  15. O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).

    Article  ADS  Google Scholar 

  16. L. Stixrude and M. S. T. Bukowinski, Phys. Rev. B 44, 2523 (1991).

    Article  ADS  Google Scholar 

  17. J. S. Tse, D. D. Klug, and Y. Le Page, Phys. Rev. B 46, 5933 (1992).

    Article  ADS  Google Scholar 

  18. R. J. Della Valle and E. Venuti, Phys. Rev. B 54, 3809 (1996).

    ADS  Google Scholar 

  19. D. J. Lacks, Phys. Rev. Lett. 80, 5385 (1998).

    Article  ADS  Google Scholar 

  20. D. J. Lacks, Phys. Rev. Lett. 84, 4629 (2000).

    Article  ADS  Google Scholar 

  21. E. Demiralp, T. Cagin, and W. A. Goddard, III, Phys. Rev. Lett. 82, 1708 (1999).

    Article  ADS  Google Scholar 

  22. E. Yu. Tonkov, High Pressure Phase Transformations: A Handbook (Gorgon and Breach, Philadelphia, 1992; Metallurgiya, Moscow, 1988), Vol. 1, p. 601.

    Google Scholar 

  23. V. Swamy, S. K. Saxena, B. Sundman, and J. Zhang, J. Geophys. Res. 99, 11787 (1994).

    Google Scholar 

  24. S. Susman, K. J. Volin, D. L. Price, et al., Phys. Rev. B 43, 1194 (1991).

    ADS  Google Scholar 

  25. Y. Inamura, M. Arai, N. Kitamura, et al., Physica B (Amsterdam) 241, 903 (1997).

    ADS  Google Scholar 

  26. G. D. Mukherjee, S. N. Vaidya, and V. Sugandhi, Phys. Rev. Lett. 87, 195501 (2001).

    Google Scholar 

  27. P. McMillan, B. Piriou, and R. Couty, J. Chem. Phys. 81, 4234 (1984).

    Article  ADS  Google Scholar 

  28. R. A. B. Devine, R. Dupree, I. Farnan, and J. J. Capponi, Phys. Rev. B 35, 2560 (1987).

    ADS  Google Scholar 

  29. J. D. Mackenzie, J. Am. Ceram. Soc. 46, 470 (1963).

    Google Scholar 

  30. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Press. Res. 10, 523 (1992).

    Google Scholar 

  31. L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, High Temp.-High Press. 9, 637 (1977).

    Google Scholar 

  32. K. Suito, M. Miyoshi, and A. Onodera, High Press. Res. 16, 217 (1999).

    Google Scholar 

  33. S. V. Goryainov and N. N. Ovsyuk, Pis’ma Zh. Éksp. Teor. Fiz. 69, 431 (1999) [JETP Lett. 69, 467 (1999)].

    Google Scholar 

  34. M. Kanzaki, J. Am. Ceram. Soc. 73, 3706 (1990).

    Article  Google Scholar 

  35. E. Ohtani, F. Taulelle, and C. A. Angell, Nature 314, 78 (1985).

    Article  ADS  Google Scholar 

  36. J. Zhang, R. C. Liebermann, T. Gasparik, et al., J. Geophys. Res. 98, 19785 (1993).

    Google Scholar 

  37. I. Saika-Voivod, F. Sciortino, and P. H. Poole, Phys. Rev. E 63, 11202 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 75, No. 7, 2002, pp. 413–418.

Original Russian Text Copyright © 2002 by El’kin, Brazhkin, Khvostantsev, Tsiok, Lyapin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El’kin, F.S., Brazhkin, V.V., Khvostantsev, L.G. et al. In situ study of the mechanism of formation of pressure-densified Sio2 glasses. Jetp Lett. 75, 342–347 (2002). https://doi.org/10.1134/1.1485264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1485264

PACS numbers

Navigation