Skip to main content
Log in

Crossover between the thermodynamic and nonequilibrium scenarios of structural transformations of H2O Ih ice during compression

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A detailed investigation of different scenarios of structural transformations of H2O Ih ice during compression to a pressure of 2 GPa in the temperature range from 77 to 200 K is performed. In the range of temperatures and pressures being treated, detailed data are obtained for the density and the shear modulus for different phases of ice including the hda, IX, and XII phases. The experimentally obtained correlations for the density and ultrasonic velocities, with due regard for the available data of structural investigations, are used to identify the transformation sequences Ih→hda (below 135 K), Ih→II→VI (above 165 K), and Ih→IX→VI (from 155 to 180 K). In the vicinity of the crystallization temperature of amorphous ice, i.e., at about 140 K, an anomalous transformation pattern is observed, which is interpreted as predominantly the Ih→XII phase transition. The temperature crossover is discussed between the mode of solid-phase amorphization (Ihhda) and crystal-crystal transitions, as well as the metastable nature of IX ice and the mechanism of solid-phase amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Poirier, Nature 299, 683 (1982).

    Article  ADS  Google Scholar 

  2. A. G. G. M. Tielens and L. J. Allamandola, in Physical Processes in Interstellar Clouds, Ed. G. E. Morfill and M. Scholer (Reidel, Dordrecht, 1987), p. 333.

    Google Scholar 

  3. M. J. Mumma, P. R. Weissman, and S. A. Stern, in Protostars and Planets III, Ed. by E. H. Levy, J. I. Lunine, and M. S. Matthews (Univ. of Arizona Press, Tucson, 1993), p. 1177.

    Google Scholar 

  4. P. Jenniskens and D. F. Blake, Science 265, 753 (1994).

    ADS  Google Scholar 

  5. P. Jenniskens, D. F. Blake, M. A. Wilson, and A. Pohorille, Astrophys. J. 455, 389 (1995).

    Article  ADS  Google Scholar 

  6. P. Mehl and P. Boutron, J. Phys. (Paris), Colloq. 48, C1–449 (1987).

    ADS  Google Scholar 

  7. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 441 (1911).

    Google Scholar 

  8. P. V. Hobbs, Ice Physics (Oxford Univ. Press, London, 1974).

    Google Scholar 

  9. E. Yu. Tonkov, High Pressure Phase Transformations(Metallurgiya, Moscow, 1988; Gordon and Breach, Philadelphia, 1992), Vol. 2.

    Google Scholar 

  10. C. Lobban, J. L. Finney, and F. Kuhs, Nature 391, 268 (1998).

    Google Scholar 

  11. O. Mishima and H. E. Stanley, Nature 392, 164 (1998).

    Article  Google Scholar 

  12. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393 (1984).

    Article  Google Scholar 

  13. O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76 (1985).

    Article  ADS  Google Scholar 

  14. O. Mishima, J.Chem. Phys. 100, 5910 (1994).

    Article  ADS  Google Scholar 

  15. R. J. Hemley, L. C. Chen, and H. K. Mao, Nature 338, 638 (1989).

    Article  ADS  Google Scholar 

  16. O. Mishima, Nature 384, 546 (1996).

    Article  ADS  Google Scholar 

  17. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1975, 2nd ed.), Part 1.

    Google Scholar 

  18. V. V. Brazhkin and A. G. Lyapin, High Press. Res. 15, 9 (1996).

    Google Scholar 

  19. A. G. Lyapin and V. V. Brazhkin, Phys. Rev. B 54, 12036 (1996).

    Google Scholar 

  20. V. V. Brazhkin, Ye. V. Tat’yanin, A. G. Lyapin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 424 (2000) [JETP Lett. 71, 293 (2000)].

    Google Scholar 

  21. R. J. Hemley, A. P. Jephcoat, H. K. Mao, et al., Nature 334, 52 (1988).

    Article  ADS  Google Scholar 

  22. Y. Fujii, M. Kowaka, and A. Onodera, J. Phys. C 18, 789 (1985).

    Article  ADS  Google Scholar 

  23. E. G. Ponyatovsky and O. I. Barcalov, Mater. Sci. Rep 8, 147 (1992).

    Article  Google Scholar 

  24. L. E. McNeil and M. Crimsditch, Phys. Rev. Lett. 68, 83 (1992).

    Article  ADS  Google Scholar 

  25. K. J. Kingma, C. Meade, R. J. Hemley, et al., Science 259, 666 (1993).

    ADS  Google Scholar 

  26. J. S. Tse and D. D. Klug, Phys. Rev. Lett. 67, 3559 (1991).

    Article  ADS  Google Scholar 

  27. J. S. Tse, J. Chem. Phys. 96, 5482 (1992).

    Article  ADS  Google Scholar 

  28. N. Binggeli and J. R. Chelikowsky, Phys. Rev. Lett. 69, 2220 (1992).

    Article  ADS  Google Scholar 

  29. N. Binggeli, N. R. Keskar, and J. R. Chelikowsky, Phys. Rev. B 49, 3075 (1994).

    ADS  Google Scholar 

  30. M. Hemmati, A. Chizmeshya, G. H. Wolf, et al., Phys. Rev. B 51, 14 841 (1995).

  31. G. H. Shaw, J. Chem. Phys. 84, 5862 (1986).

    ADS  Google Scholar 

  32. R. E. Gagnon, H. Kiefte, M. J. Clouter, and E. Whalley, J. Phys. (Paris), Colloq. 48, C1–29 (1987).

    Google Scholar 

  33. R. E. Gagnon, H. Kiefte, M. J. Clouter, and E. Whalley, J. Chem. Phys. 92, 1909 (1990).

    Article  ADS  Google Scholar 

  34. M. A. Floriano, Y. P. Handa, D. D. Klug, and E. Whalley, J. Chem. Phys. 91, 7187 (1989).

    ADS  Google Scholar 

  35. A. Bizid, L. Bosio, A. Defrain, and M. Oumezzine, J. Chem. Phys. 87, 2225 (1987).

    Article  ADS  Google Scholar 

  36. E. Whalley, D. D. Klug, M. A. Floriano, et al., J. Phys. (Paris) 48, C1–429 (1987).

    Google Scholar 

  37. O. V. Stal’gorova, E. L. Gromnitskaya, and V. V. Brazhkin, Pis’ma Zh. Éksp. Teor. Fiz. 62, 334 (1995) [JETP Lett. 62, 356 (1995)].

    Google Scholar 

  38. E. L. Gromnitskaya, O. V. Stal’gorova, and V. V. Brazhkin, Zh. Éksp. Teor. Fiz. 112, 200 (1997) [JETP 85, 109 (1997)].

    Google Scholar 

  39. A. G. Garg, Phys. Status Solidi A 110, 467 (1988).

    Google Scholar 

  40. M. Koza, H. Schober, A. Tölle, et al., Nature 397, 660 (1999).

    Article  Google Scholar 

  41. M. Koza, H. Schober, T. Hansen, et al., Phys. Rev. Lett. 84, 4112 (2000).

    Article  ADS  Google Scholar 

  42. E. P. Papadakis, Rev. Sci. Instrum. 47, 805 (1976).

    Article  ADS  Google Scholar 

  43. O. V. Stal’gorova, E. L. Gromnitskaya, D. R. Dmitriev, and F. F. Voronov, Prib. Tekh. Éksp. 39, 115 (1996).

    Google Scholar 

  44. E. Whalley, J. B. R. Heath, and D. W. Davidson, J. Chem. Phys. 48, 2362 (1968).

    Article  Google Scholar 

  45. S. J. La Placa, W. C. Hamilton, B. Kamb, and A. Prakash, J. Chem. Phys. 58, 567 (1973).

    Google Scholar 

  46. J. D. Londo, W. F. Kuhs, and J. L. Finney, J. Chem. Phys. 98, 4878 (1993).

    ADS  Google Scholar 

  47. C. A. Tulk, R. E. Gagnon, H. Kiefte, and M. J. Clouter, J. Chem. Phys. 104, 7854 (1996).

    Article  ADS  Google Scholar 

  48. C. A. Tulk, R. E. Gagnon, H. Kiefte, and M. J. Clouter, J. Chem. Phys. 107, 10 684 (1997).

    Google Scholar 

  49. B. Kamb, Science 150, 205 (1965).

    ADS  Google Scholar 

  50. K. Nishibata and E. Whalley, J. Chem. Phys. 60, 3189 (1974).

    Article  Google Scholar 

  51. B. Minceva-Sukarova, G. E. Slark, W. F. Sherman, and G. R. Wilkinson, J. Phys. (Paris), Colloq. 48, C1–37 (1987).

    ADS  Google Scholar 

  52. D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).

    Google Scholar 

  53. J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).

    ADS  Google Scholar 

  54. J. Wang, J. Li, S. Yip, et al., Phys. Rev. B 52, 12627 (1995).

  55. R. E. Gagnon, H. Kiefte, M. J. Clouter, and E. Whalley, J. Chem. Phys. 89, 4522 (1988).

    Article  ADS  Google Scholar 

  56. J. Koike, Phys. Rev. B 47, 7700 (1993).

    Article  ADS  Google Scholar 

  57. J. S. Tse, D. D. Klug, C. A. Tulk, et al., Nature 400, 647 (1999).

    Article  Google Scholar 

  58. S. W. Peterson and H. A. Levy, Acta Crystallogr. 10, 70 (1957).

    Google Scholar 

  59. W. P. Kuhs and M. S. Lehman, in Water Science Reviews, Ed. by F. Franks (Cambridge Univ. Press, Cambridge, 1985), Vol. 2.

    Google Scholar 

  60. J. Li and D. K. Ross, Nature 365, 327 (1993).

    Article  ADS  Google Scholar 

  61. J. S. Tse, M. L. Klein, and I. R. McDonald, J. Chem. Phys. 81, 6124 (1984).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 121, No. 2, 2002, pp. 335–346.

Original Russian Text Copyright © 2002 by Lyapin, Stal’gorova, Gromnitskaya, Brazhkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyapin, A.G., Stal’gorova, O.V., Gromnitskaya, E.L. et al. Crossover between the thermodynamic and nonequilibrium scenarios of structural transformations of H2O Ih ice during compression. J. Exp. Theor. Phys. 94, 283–292 (2002). https://doi.org/10.1134/1.1458477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458477

Keywords

Navigation