Skip to main content
Log in

Pinning of vortices by the domain structure in a two-layered type II superconductor-ferromagnet system

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effectiveness of magnetic pinning of vortices in a layered system formed by a uniaxial ferromagnet and type II superconductor is considered. It is shown that, irrespective of the saturation magnetization of the ferromagnet, the energy of pinning at the domain structure does not exceed, in order of magnitude, the energy of artificial pinning at a column-type defect. The limitation of pinning energy is caused by the interaction of external vortices with a spontaneous vortex lattice formed in the superconducting film when the magnetization of the ferromagnetic film exceeds the critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors (Taylor and Francis, London, 1972; Mir, Moscow, 1975).

    Google Scholar 

  2. R. P. Huebener, Magnetic Flux Structures in Superconductors (Springer-Verlag, Berlin, 1979; Mashinostroenie, Moscow, 1984).

    Google Scholar 

  3. T. H. Alden and J. D. Livingston, J. Appl. Phys. 37(9), 3551 (1966).

    Article  Google Scholar 

  4. O. Daldini, P. Martinoli, J. L. Olsen, and G. Berner, Phys. Rev. Lett. 32, 218 (1974).

    Article  ADS  Google Scholar 

  5. M. Baert, V. V. Metlushko, R. Jonckheere, et al., Phys. Rev. Lett. 74, 3269 (1995).

    Article  ADS  Google Scholar 

  6. L. Civale, A. D. Marvick, T. K. Wortington, et al., Phys. Rev. Lett. 67, 648 (1991).

    Article  ADS  Google Scholar 

  7. D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992).

    ADS  Google Scholar 

  8. D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48, 13060 (1993).

    Google Scholar 

  9. Y. Otani, B. Pannetier, J. P. Nozieres, and D. Givord, J. Magn. Magn. Mater. 126, 622 (1993).

    Article  ADS  Google Scholar 

  10. D. J. Morgan and J. B. Ketterson, Phys. Rev. Lett. 80, 3614 (1998).

    ADS  Google Scholar 

  11. I. K. Marmorkos, A. Matulis, and F. M. Peeters, Phys. Rev. B 53, 2677 (1996).

    Article  ADS  Google Scholar 

  12. J. I. Martin, M. Velez, J. Nogues, and I. K. Schuller, Phys. Rev. Lett. 79, 1929 (1997).

    ADS  Google Scholar 

  13. Y. Jaccard, J. I. Martin, M.-C. Cyrylle, et al., Phys. Rev. B 58, 8232 (1998).

    Article  ADS  Google Scholar 

  14. J. I. Martin, M. Velez, J. Nogues, et al., J. Appl. Phys. 84, 411 (1998).

    ADS  Google Scholar 

  15. J. I. Martin, M. Velez, J. Nogues, et al., J. Magn. Magn. Mater. 177, 915 (1998).

    Article  ADS  Google Scholar 

  16. J. I. Martin, M. Velez, A. Hoffmann, et al., Phys. Rev. Lett. 83, 1022 (1999).

    ADS  Google Scholar 

  17. F. Marty, A. Vaterlau, U. Majer, and D. Pescia, J. Appl. Phys. 87, 5099 (2000).

    ADS  Google Scholar 

  18. F. Hellman, A. L. Shapiro, E. N. Abarra, et al., Phys. Rev. B 59, 11408 (1999).

  19. F. Hellman, M. Messer, and E. N. Abarra, J. Appl. Phys. 86, 1047 (1999).

    Article  ADS  Google Scholar 

  20. N. D. Rizzo, T. J. Silva, and A. B. Kos, Phys. Rev. Lett. 83, 4876 (1999).

    Article  ADS  Google Scholar 

  21. C. Reinchhard, J. Groth, C. J. Olson, et al., Phys. Rev. B 54, 16108 (1996).

  22. W. Schindler, B. Roas, G. Saemann-Ischenko, et al., Physica C (Amsterdam) 169, 117 (1990).

    ADS  Google Scholar 

  23. F. M. Sauerzopf, H. P. Wiesinger, W. Kritscha, et al., Phys. Rev. B 43, 3091 (1991).

    Article  ADS  Google Scholar 

  24. Yu. I. Bespyatykh, W. Wasilevski, M. Gajdek, et al., Fiz. Tverd. Tela (St. Petersburg) 36, 586 (1994) [Phys. Solid State 36, 323 (1994)].

    Google Scholar 

  25. A. Stankiewicz, S. Robinson, G. F. Gering, and V. V. Tarasenko, J. Phys.: Condens. Matter 9, 1019 (1997).

    Article  ADS  Google Scholar 

  26. Yu. I. Bespyatykh, W. Wasilevski, É. G. Lokk, and V. D. Kharitonov, Fiz. Tverd. Tela (St. Petersburg) 40(6), 1068 (1998) [Phys. Solid State 40, 975 (1998)].

    Google Scholar 

  27. E. H. Brandt, J. Low Temp. Phys. 44(1/2), 59 (1981).

    Google Scholar 

  28. Yu. I. Bespyatykh and W. Wasilevski, Fiz. Tverd. Tela (St. Petersburg) 43(2), 215 (2001) [Phys. Solid State 43, 224 (2001)].

    Google Scholar 

  29. L. N. Bulaevskii, E. M. Chudnovsky, and M. P. Maley, Appl. Phys. Lett. 76, 2594 (2000).

    Article  ADS  Google Scholar 

  30. V. G. Gaivoron, Yu. F. Ogrin, N. I. Polzikova, and V. V. Tarasenko, in Proceedings of the V All-Union School on Spin Microwave Electronics, Zvenigorod, 1991, p. 45.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 43, No. 10, 2001, pp. 1754–1760.

Original Russian Text Copyright © 2001 by Bespyatykh, Wasilevski, Gajdek, Nikitin, Nikitov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bespyatykh, Y.I., Wasilevski, W., Gajdek, M. et al. Pinning of vortices by the domain structure in a two-layered type II superconductor-ferromagnet system. Phys. Solid State 43, 1827–1833 (2001). https://doi.org/10.1134/1.1410618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1410618

Keywords

Navigation