Skip to main content
Log in

High-precision calculationsj of the 3,1 P 01 1 S 0 E1 amplitudes for magnesium, calcium, and strontium

  • Atoms, Spectra, Radiations
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

High-precision calculations of the 3,1 P 01 (ns np1 S 0(ns 2) E1 amplitudes were carried out for magnesium, calcium, and strontium (n=3, 4, and 5, respectively). The following results were obtained for the reduced matrix element 〈1 P 01 d1 S 0〉 of electric dipole moment operator: 4.03(2) au for Mg, 4.91(7) au for Ca, and 5.28(9) au for Sr. These matrix elements are necessary for calculating the van der Waals coefficients C 6, which are used in evaluating the atomic scattering lengths. The latter determine the dynamics and stability of the Bose-Einstein condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Drag, B. Laburthe-Tolra, B. T. Jampens, et al., Phys. Rev. Lett. 85, 1408 (2000).

    Article  ADS  Google Scholar 

  2. P. L. Leo, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 85, 2721 (2000).

    Article  ADS  Google Scholar 

  3. M. Machholm, P. S. Julienne, and K.-A. Suominen, Phys. Rev. A 59, R4113 (1999).

    Article  ADS  Google Scholar 

  4. G. Zinner, T. Binnewies, and F. Riehle, Phys. Rev. Lett. 85, 2292 (2000).

    Article  ADS  Google Scholar 

  5. T. P. Dinneen, K. R. Vogel, E. Arimondo, et al., Phys. Rev. A 59, 1216 (1999).

    Article  ADS  Google Scholar 

  6. A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, Phys. Rev. Lett. 82, 3589 (1999); A. Derevianko and A. Dalgarno, Phys. Rev. A 62, 062501 (2000).

    Article  ADS  Google Scholar 

  7. A. Dalgarno and W. D. Davidson, Adv. At. Mol. Phys. 2, 1 (1966).

    Google Scholar 

  8. A. Derevianko, private communication.

  9. L. Liljeby, A. Lindgard, S. Mannervik, et al., Phys. Scr. 21, 805 (1980).

    ADS  Google Scholar 

  10. F. M. Kelly and M. S. Mathur, Can. J. Phys. 58, 1416 (1980).

    ADS  Google Scholar 

  11. T. Brage, C. F. Fisher, N. Vaeck, and A. Gallagher, Phys. Scr. 48, 533 (1993) and references therein.

    ADS  Google Scholar 

  12. H. G. C. Werij, C. H. Greene, C. E. Theodosiou, et al., Phys. Rev. A 46, 1248 (1992).

    Article  ADS  Google Scholar 

  13. V. V. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 54, 3948 (1996); S. G. Porsev, Yu. G. Rakhlina, and M. G. Kozlov, J. Phys. B 32, 1113 (1999); S. G. Porsev, Yu. G. Rakhlina, and M. G. Kozlov, Phys. Rev. A 60, 2781 (1999).

    Article  ADS  Google Scholar 

  14. M. G. Kozlov and S. G. Porsev, Opt. Spektrosk. 87, 384 (1999) [Opt. Spectrosc. 87, 352 (1999)].

    Google Scholar 

  15. V. A. Dzyuba, M. G. Kozlov, S. G. Porsev, and V. V. Flambaum, Zh. Éksp. Teor. Fiz. 114, 1636 (1998) [JETP 87, 885 (1998)].

    Google Scholar 

  16. P. Jonsson and C. Froese Fisher, J. Phys. B 30, 5861 (1997).

    ADS  Google Scholar 

  17. L. Lundin, B. Engman, J. Hilke, and I. Martinson, Phys. Scr. 8, 274 (1973).

    ADS  Google Scholar 

  18. W. H. Parkinson, E. M. Reeves, and F. S. Tomkins, J. Phys. B 9, 157 (1976).

    Article  ADS  Google Scholar 

  19. W. W. Smith and A. Gallagher, Phys. Rev. A 145, 26 (1966).

    ADS  Google Scholar 

  20. W. J. Hansen, J. Phys. B 16, 2309 (1983).

    ADS  Google Scholar 

  21. A. Godone and C. Novero, Phys. Rev. A 45, 1717 (1992).

    Article  ADS  Google Scholar 

  22. D. Husain and G. J. Roberts, J. Chem. Soc., Faraday Trans. 2 82, 1921 (1986).

    Google Scholar 

  23. D. Husain and J. Schifino, J. Chem. Soc., Faraday Trans. 2 80, 321 (1984).

    Google Scholar 

  24. H. S. Kwong, P. L. Smith, and W. H. Parkinson, Phys. Rev. A 25, 2629 (1982).

    Article  ADS  Google Scholar 

  25. R. Drozdowski, M. Ignasiuk, J. Kwela, and J. Heldt, Z. Phys. D 41, 125 (1997).

    Article  Google Scholar 

  26. C. Mitchell, J. Phys. B 8, 25 (1975).

    Article  ADS  Google Scholar 

  27. P. G. Whitkop and J. R. Wiesenfeld, Chem. Phys. Lett. 69, 457 (1980).

    Article  ADS  Google Scholar 

  28. J. F. Kelly, M. Harris, and A. Gallagher, Phys. Rev. A 37, 2354 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 12, 2000, pp. 862–866.

Original Russian Text Copyright © 2000 by Porsev, Kozlov, Rakhlina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porsev, S.G., Kozlov, M.G. & Rakhlina, Y.G. High-precision calculationsj of the 3,1 P 01 1 S 0 E1 amplitudes for magnesium, calcium, and strontium. Jetp Lett. 72, 595–598 (2000). https://doi.org/10.1134/1.1351197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1351197

PACS numbers

Navigation