Skip to main content
Log in

Estimation of physical conditions in the cold phase of the interstellar medium in the sub-DLA system at z = 2.06 in the spectrum of the quasar J 2123–0050

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

An independent analysis of the molecular hydrogen absorption system at redshift z abs = 2.059 in the spectrum of the quasar J 2123−0050 is presented. The H2 system consists of two components (A and B) with column densities \(\log N_{{H_2}}^A = 17.94 \pm 0.01\) and \(N_{{H_2}}^B = 15.16 \pm 0.02\). The spectrum exhibits the lines of HDmolecules (logN AHD = 13.87±0.06) and the neutral speciesCI and Cl I associated with the H2 absorption system. For the molecular hydrogen lines near the quasar’s Lyβ and OVI emission lines, we detect a nonzero residual flux, ~3% of the total flux, caused by the effect of partial coverage of the quasar’s broad-line region by an H2 cloud. Due to the smallness of the residual flux, the effect does not affect the H2 column density being determined but increases the statistics of observations of the partial coverage effect to four cases. The uniqueness of the system being investigated is manifested in a high abundance of the neutral species H2 and CI at the lowest HI column density, logN HI = 19.18 ± 0.15, among the highredshift systems. The H2 and CI column densities in the system being investigated turn out to be higher than those in similar systems in our Galaxy and theMagellanic Clouds by two or three orders ofmagnitude. The \(N_{HD} /2N_{H_2 }\) ratio for component A has turned out to be also unusually high, (4.26 ± 0.60) × 10−5, which exceeds the deuterium abundance (D/H) for high-redshift systems by a factor of 1.5. Using the HI, H2, HD, and CI column densities as well as the populations of excited H2 and CI levels, we have investigated the physical conditions in components A and B. Component A represents the optically thick case; the gas has a low number density (~30 cm−3) and a temperature T ~ 140 K. In component B, the mediumis optically thin with n H ≤ 100 cm−3 and T ≥ 100 K. The ultraviolet (UV) background intensity in the clouds exceeds the mean intensity in our Galaxy by almost an order ofmagnitude. A high gas ionization fraction, \(n_{H^ + } /n_H \sim 10^{ - 2}\), which can be the result of partial shielding of the systemfrom hard UV radiation, is needed to describe the high HD and CI column densities. Using our simulations with the PDRMeudon code, we can reconstruct the observed column densities of the species within the model with a constant density (n H ~ 40 cm−3). A high H2 formation rate (higher than the mean Galactic value by a factor of 10−40) and high gas ionization fraction and UV background intensity are needed in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abel, P. Anninos, Y. Zhang, and M. L. Norman, New Astron. 2, 181 (1997).

    Article  ADS  Google Scholar 

  2. H. Abgrall and E. Roueff, Astron. Astrophys. 445, 361 (2006).

    Article  ADS  Google Scholar 

  3. H. Abgrall, J. Le Bourlot, G. Pineau des Forets, E. Roueff, D. R. Flower, and L. Heck, Astron. Astrophys. 253, 525 (1992).

    ADS  Google Scholar 

  4. E. Abrahamsson, R. V. Krems, and A. Dalgarno, Astrophys. J. 654, 1172 (2007).

    Article  Google Scholar 

  5. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, et al., arXiv: 1502. 01589 (2015).

  6. D. Albornoz Vasquez, H. Rahmani, P. Noterdaeme, P. Petitjean, R. Srianand, and C. Ledoux, Astron. Astrophys. 562, 88 (2014).

    Article  ADS  Google Scholar 

  7. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  8. S. A. Balashev, A. V. Ivanchik, and D. A. Varshalovich, Astron. Lett. 36, 761 (2010).

    Article  ADS  Google Scholar 

  9. S. A. Balashev, V. V. Klimenko, A. V. Ivanchik, D. A. Varshalovich, P. Petitjean, and P. Noterdaeme, Mon. Not. R. Astron. Soc. 440, 225 (2014).

    Article  ADS  Google Scholar 

  10. S. A. Balashev, P. Noterdaeme, V. V. Klimenko, P. Petitjean, R. Srianand, C. Ledoux, A. V. Ivanchik, and D. A. Varshalovich, Astron. Astrophys. 575, L8 (2015).

    Article  ADS  Google Scholar 

  11. S. A. Balashev, P. Petitjean, A. V. Ivanchik, C. Ledoux, R. Srianand, P. Noterdaeme, and D. A. Varshalovich, Mon. Not. R. Astron. Soc. 418, 357 (2011).

    Article  ADS  Google Scholar 

  12. S. A. Balashev, D. A. Varshalovich, and A. V. Ivanchik, Astron. Lett. 35, 150 (2009).

    Article  ADS  Google Scholar 

  13. J. H. Black and A. Dalgarno, Astrophys. J. 203, 132 (1976).

    Article  ADS  Google Scholar 

  14. R. C. Bohlin, B. D. Savage, and J. F. Drake, Astrophys. J. 224, 132 (1978).

    Article  ADS  Google Scholar 

  15. J. le Bourlot, F. le Petit, C. Pinto, E. Roueff, and F. Roy, Astron. Astrophys. 541, 76L (2012).

    Article  ADS  Google Scholar 

  16. C. Cecchi-Pestellini, S. Casu, and A. Dalgarno, Mon. Not. R. Astron. Soc. 364, 1309 (1997).

    Article  ADS  Google Scholar 

  17. V. D’Elia, J. P. U. Fynbo, P. Goldoni, S. Covino, A. de Ugarte Postigo, C. Ledoux, F. Calura, J. Gorosabel, et al., Astron. Astrophys. 564, 38 (2014).

    Article  Google Scholar 

  18. B. T. Draine and F. Bertoldi, Astrophys. J. 468, 269 (1996).

    Article  ADS  Google Scholar 

  19. G. J. Ferland, R. L. Porter, P. A. M. van Hoof, R. J. R. Williams, N. P. Abel, M. L. Lykins, G. Shaw, W. J. Henney, et al., Rev. Mex. Astron. Astrophys. 49, 137 (2013).

    ADS  Google Scholar 

  20. R. C. Forrey, N. Balakrishnan, and A. Dalgarno, Astrophys. J. 489, 1000 (1997).

    Article  ADS  Google Scholar 

  21. M. Friis, A. de Cia, T. Kruhler, J. P. U. Fynbo, C. Ledoux, P. M. Vreeswijk, D. J. Watson, D. Malesani, et al., Mon. Not. R. Astron. Soc. 451, 167 (2015).

    Article  ADS  Google Scholar 

  22. C. Gry, F. Boulanger, C. Nehme, G. Pineau des Forets, E. Habart, and E. Falgarone, Astron. Astrophys. 391, 675 (2002).

    Article  ADS  Google Scholar 

  23. F. Haardt and P. Madau, Astrophys. J. 461, 20 (1996).

    Article  ADS  Google Scholar 

  24. H. J. Habing, Bull. Astron. Instit. Netherlands 19, 421 (1968).

    ADS  Google Scholar 

  25. H. Hirashita and A. Ferrara, Mon. Not. R. Astron. Soc. 356, 1529 (2005).

    Article  ADS  Google Scholar 

  26. D. Hollenbach, M. J. Kaufman, D. Neufeld, M. Wolfire, and J. R. Goicoechea, Astrophys. J. 754, 105 (2012).

    Article  ADS  Google Scholar 

  27. A. V. Ivanchik, P. Petitjean, S. A. Balashev, R. Srianand, D. A. Varshalovich, C. Ledoux, and P. Noterdaeme, Mon. Not. R. Astron. Soc. 404, 1583 (2010).

    ADS  Google Scholar 

  28. A. V. Ivanchik, S. A. Balashev, D. A. Varshalovich, and V. V. Klimenko, Astron. Rep. 59, 100 (2015).

    Article  ADS  Google Scholar 

  29. T. I. Ivanov, G. D. Dickenson, M. Roudjane, N. De Oliveira, D. Joyeux, L. Nahon, W.-U. L. Tchang-Brillet, and W. Ubachs, Mol. Phys. 104, 771 (2010).

    Article  ADS  Google Scholar 

  30. E. B. Jenkins and M. Tripp, Astrophys. J. Suppl. Ser. 137, 297 (2001).

    Article  ADS  Google Scholar 

  31. R. A. Jorgenson, M. T. Murphy, R. Thompson, and R. F. Carswell, Mon. Not. R. Astron. Soc. 433, 2783 (2014).

    Article  ADS  Google Scholar 

  32. K. Joulain, E. Falgarone, G. Pineau des Forets, and D. Flower, Astron. Astrophys. 340, 241 (1998).

    ADS  Google Scholar 

  33. M. Jura, Astrophys. J. 190, 33 (1974).

    Article  ADS  Google Scholar 

  34. M. Jura, Astrophys. J. 197, 575 (1975a).

    Article  ADS  Google Scholar 

  35. M. Jura, Astrophys. J. 197, 581 (1975b).

    Article  ADS  Google Scholar 

  36. V. V. Klimenko, S. A. Balashev, A. V. Ivanchik, C. Ledoux, P. Noterdaeme, P. Petitjean, R. Srianand, and D. A. Varshalovich, Mon. Not. R. Astron. Soc. 448, 280 (2015).

    Article  ADS  Google Scholar 

  37. J.-K. Krogager, J. P. U. Fynbo, P. Moller, C. Ledoux, P. Noterdaeme, L. Christensen, B. Milvang-Jensen, and M. Sparre, Mon. Not. R. Astron. Soc. 424, L1 (2012).

    Article  ADS  Google Scholar 

  38. T. Kruhler, C. Ledoux, J. P. U. Fynbo, P. M. Vreeswijk, S. Schmidl, D. Malesani, L. Christensen, A. De Cia, et al., Astron. Astrophys. 557, 21 (2013).

    Article  Google Scholar 

  39. S. Lacour, M. K. Andre, P. Sonnentrucker, F. le Petit, D. E. Welty, J. M. Desert, R. Ferlet, E. Roueff, and D. G. York, Astron. Astrophys. 430, 967 (2005).

    Article  ADS  Google Scholar 

  40. C. Ledoux, P. Noterdaeme, P. Petitjean, and R. Srianand, Astron. Astrophys. 580, 15 (2015).

    Article  Google Scholar 

  41. S. A. Levshakov and D. A. Varshalovich, Mon. Not. R. Astron. Soc. 212, 517 (1985).

    Article  ADS  Google Scholar 

  42. A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L24 (2007).

    Article  Google Scholar 

  43. H. S. Liszt, Astron. Astrophys. 527, 45 (2011).

    Article  ADS  Google Scholar 

  44. H. S. Liszt, Astrophys. J. 799, 66 (2015).

    Article  ADS  Google Scholar 

  45. A. L. Malec, R. Buning, M. T. Murphy, N. Milutinovic, S. L. Ellison, J. X. Prochaska, L. Kaper, J. Tumlinson, et al., Mon. Not. R. Astron. Soc. 403, 1541 (2010).

    Article  ADS  Google Scholar 

  46. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    Article  ADS  Google Scholar 

  47. J. S. Mathis, P. G. Mezger, and N. Panagia, Astron. Astrophys. 128, 212 (1983).

    ADS  Google Scholar 

  48. J. D. Meiring, J. T. Lauroesch, V. P. Kulkarni, C. Peroux, P. Khare, D. G. York, and A. P. S. Crotts, Mon. Not. R. Astron. Soc. 376, 557 (2007).

    Article  ADS  Google Scholar 

  49. N. Milutinovic, S. L. Ellison, J. X. Prochaska, and J. Tumlinson, Mon. Not. R. Astron. Soc. 408, 2071 (2010).

    Article  ADS  Google Scholar 

  50. S. N. Nahar and A. K. Pradhan, Astrophys. J. Suppl. Ser. 111, 339 (1997).

    Article  ADS  Google Scholar 

  51. P. Noterdaeme, P. Petitjean, R. Srianand, C. Ledoux, and F. le Petit, Astron. Astrophys. 469, 425 (2007).

    Article  ADS  Google Scholar 

  52. P. Noterdaeme, C. Ledoux, P. Petitjean, and R. Srianand, Astron. Astrophys. 481, 327 (2008).

    Article  ADS  Google Scholar 

  53. P. Noterdaeme, C. Ledoux, R. Srianand, P. Petitjean, and S. Lopez, Astron. Astrophys. 503, 765 (2009).

    Article  ADS  Google Scholar 

  54. P. Noterdaeme, P. Petitjean, W. C. Carithers, I. Paris, A. Font-Ribera, S. Bailey, E. Aubourg, D. Bizyaev, et al., Astron. Astrophys. 547, 1 (2012).

    Article  ADS  Google Scholar 

  55. P. Noterdaeme, R. Srianand, H. Rahmani, P. Petitjean, I. Paris, C. Ledoux, N. Gupta, and S. Lopez, Astron. Astrophys. 577, 24 (2015).

    Article  ADS  Google Scholar 

  56. D. D. Ofengeim, S. A. Balashev, A. V. Ivanchik, A. D. Kaminker, and V. V. Klimenko, Astrophys. Space Sci. 359, 26 (2015).

    Article  ADS  Google Scholar 

  57. F. le Petit, E. Roueff, and J. le Bourlot, Astron. Astrophys. 390, 369 (2002).

    Article  ADS  Google Scholar 

  58. F. le Petit, E. Roueff, and E. Herbst, Astron. Astrophys. 417, 993 (2004).

    Article  ADS  Google Scholar 

  59. F. le Petit, C. Nehme, J. le Bourlot, and E. Roueff, Astrophys. J. Suppl. Ser. 164, 506 (2006).

    Article  ADS  Google Scholar 

  60. J. X. Prochaska and A. M. Wolfe, Astrophys. J. 696, 1543 (2009).

    Article  ADS  Google Scholar 

  61. J. X. Prochaska, Y. Sheffer, D. A. Perley, J. S. Bloom, L. A. Lopez, M. Dessauges-Zavadsky, H.-W. Chen, A. V. Filippenko, et al., Astrophys. J. 691, L27 (2009).

    Article  ADS  Google Scholar 

  62. B. L. Rachford, T. P. Snow, J. D. Destree, T. L. Ross, R. Ferlet, S. D. Friedman, C. Gry, E. B. Jenkins, et al., Astrophys. J. Suppl. Ser. 180, 125R (2009).

    Article  ADS  Google Scholar 

  63. K. Schroder, V. Staemmler, M. D. Smith, D. R. Flower, and R. Jaquet, J. Phys. B: At. Mol. Opt. Phys. 24, 2487 (1991).

    Article  ADS  Google Scholar 

  64. A. I. Silva and S. M. Viegas, Mon. Not. R. Astron. Soc. 329, 135 (2002).

    Article  ADS  Google Scholar 

  65. T. P. Snow, T. L. Ross, J. D. Destree, M. M. Drosback, A. G. Jensen, B. L. Rachford, P. Sonnentrucker, and R. Ferlet, Astrophys. J. 688, 1124S (2008).

    Article  ADS  Google Scholar 

  66. D. Som, V. P. Kulkarni, J. Meiring, D. G. York, C. Peroux, P. Khare, and J. T. Lauroesch, Mon. Not. R. Astron. Soc. 435, 1469 (2013).

    Article  ADS  Google Scholar 

  67. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley-Interscience, New York, 1978), p. 333.

    Google Scholar 

  68. R. Srianand, P. Petitjean, C. Ledoux, G. Ferland, and G. Shaw, Mon. Not. R. Astron. Soc. 362, 549 (2005).

    Article  ADS  Google Scholar 

  69. R. Srianand, P. Noterdaeme, C. Ledoux, and P. Petitjean, Astron. Astrophys. 482, L39 (2008).

    Article  ADS  Google Scholar 

  70. V. Staemmler and D. R. Flower, J. Phys. B: At. Mol. Opt. Phys. 24, 2343 (1991).

    Article  ADS  Google Scholar 

  71. G. Steigman, Ann. Rev. Nucl. Part. Sci. 57, 463 (2007).

    Article  ADS  Google Scholar 

  72. N. Sugiura, Commun. Stat. A: Theor. 7, 13 (1978).

    Article  MathSciNet  Google Scholar 

  73. J. Tumlinson, A. L. Malec, R. F. Carswell, M. T. Murphy, R. Buning, N. Milutinovic, S. L. Ellison, J. X. Prochaska, et al., Astrophys. J. 718, 156 (2010).

    Article  ADS  Google Scholar 

  74. D. A. Varshalovich, A. V. Ivanchik, P. Petitjean, R. Srianand, and C. Ledoux, Astron. Lett. 27, 683 (2001).

    Article  ADS  Google Scholar 

  75. F. van Weerdenburg, M. T. Murphy, A. L. Malec, L. Kaper, and W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011).

    Article  ADS  Google Scholar 

  76. D. E. Welty, L. M. Hobbs, and D. C. Morton, Astrophys. J. Suppl. Ser. 147, 61 (2003).

    Article  ADS  Google Scholar 

  77. D. E. Welty, R. Xue, and T. Wong, Astrophys. J. 745, 173 (2012).

    Article  ADS  Google Scholar 

  78. M. G. Wolfire, A. G. G. M. Tielens, D. Hollenbach, and M. J. Kaufman, Astrophys. J. 680, 384 (2008).

    Article  ADS  Google Scholar 

  79. E. L. Wright, J. C. Mather, C. L. Bennett, E. S. Cheng, R. A. Shafer, D. J. Fixsen, R. E. Eplee, R. B. Isaacman, et al., Astrophys. J. 381, 200 (1991).

    Article  ADS  Google Scholar 

  80. D. G. York, J. Adelman, J. E. Anderson, S. F. Anderson, J. Annis, N. Bahcall, et al., Astron. J. 120, 1579 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanchik.

Additional information

Original Russian Text © V.V. Klimenko, S.A. Balashev, A.V. Ivanchik, D.A. Varshalovich, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 3, pp. 161–188.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Balashev, S.A., Ivanchik, A.V. et al. Estimation of physical conditions in the cold phase of the interstellar medium in the sub-DLA system at z = 2.06 in the spectrum of the quasar J 2123–0050. Astron. Lett. 42, 137–162 (2016). https://doi.org/10.1134/S1063773716030038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716030038

Keywords

Navigation