Skip to main content
Log in

Estimation of the pitch angle of the Galactic spiral pattern

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

To estimate the pitch angle i of the Galactic spiral arms, we have used data on Galactic masers with known trigonometric parallaxes. These masers are associated with very young objects located in active star-forming regions. The well-knownmethod of analyzing the “position angle-distance logarithm” diagram has been applied. Our estimates of the angle i obtained from four segments of different arms belonging to the grand-design structure are in satisfactory agreement between themselves and are close to i = −13°. The segment of the outer arm is of greatest interest. It contains only three masers, but we have additionally invoked data on 12 very young star clusters with their distances estimated by Camargo et al. from infrared photometry. Using such a combination of data, we have found i = −13.3° ± 1.3°. Comparison of this value with other spiral density wave parameters obtained from a kinematic analysis of masers leads us to conclude that the model of a four-armed spiral pattern is most likely realized in our Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 38, 549 (2012).

    Article  ADS  Google Scholar 

  2. V. V. Bobylev, A. T. Bajkova, and A. S. Stepanishchev, Astron. Lett. 34, 515 (2008).

    Article  ADS  Google Scholar 

  3. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 408, 1788 (2010).

    Article  ADS  Google Scholar 

  4. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 37, 526 (2011).

    Article  ADS  Google Scholar 

  5. V.V. Bobylev and A.T. Bajkova, Astron. Lett., 39, 532 (2013).

    Article  ADS  Google Scholar 

  6. A. Brunthaler, M. J. Reid, K. M. Menten, et al., Astron. Nachr. 332, 461 (2011).

    Article  ADS  Google Scholar 

  7. D. Camargo, E. Bica, and C. Bonatto, arXiv: 1304.5984 (2013).

  8. S. Dzib, L. Loinard, L. F. Rodriguez, et al., Astrophys. J. 733, 71 (2011).

    Article  ADS  Google Scholar 

  9. Yu. N. Efremov, Astron.Rep. 88, 108 (2011).

    Article  ADS  Google Scholar 

  10. P. Englmaier, M. Pohl, and N. Bissantz, arXiv: 0812.3491 (2008).

  11. C. Francis and E. Anderson, Mon. Not. R. Astron. Soc. 422, 1283 (2012).

    Article  ADS  Google Scholar 

  12. T. Hirota, T. Bushimata, Y. K. Choi, et al., Publ. Astron. Soc. Jpn. 59, 897 (2007).

    ADS  Google Scholar 

  13. L. G. Hou, J. L. Han, and W. B. Shi, Astron. Astrophys. 499, 473 (2009).

    Article  ADS  Google Scholar 

  14. H. Imai, N. Sakai, H. Nakanishi, et al., Publ. Astron. Soc. Jpn. 64, 142 (2012).

    ADS  Google Scholar 

  15. K. Immer, M. J. Reid, K. M. Menten, et al., arXiv: 1304.204 (2013).

  16. T. C. Junqueira, J. R. D. Lépine, C. A. S. Braga, and D. A. Barros, Astron. Astrophys. 550, 91 (2013).

    Article  ADS  Google Scholar 

  17. M. K. Kim, T. Hirota, M. Honma, et al., Publ. Astron. Soc. Jpn. 60, 991 (2008).

    ADS  Google Scholar 

  18. J. R. D. Lépine, Yu. N. Mishurov, and S. Yu. Dedikov, Astrophys. J. 546, 234 (2001).

    Article  ADS  Google Scholar 

  19. A.M. Mel’nik and P. Rautiainen, Astron. Lett. 35, 609 (2009).

    Article  ADS  Google Scholar 

  20. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 171 (2005).

    Article  ADS  Google Scholar 

  21. M. J. Reid, K.M. Menten, X.W. Zheng, et al., Astrophys. J. 700, 137 (2009a).

    Article  ADS  Google Scholar 

  22. M. J. Reid, K.M. Menten, X.W. Zheng, et al., Astrophys. J. 705, 1548 (2009b).

    Article  ADS  Google Scholar 

  23. D. Russeil, Astron. Astrophys. 397, 134 (2003).

    Article  Google Scholar 

  24. K. L. J. Rygl, A. Brunthaler, M. J. Reid, et al., Astron. Astrophys. 511, A2 (2010).

    Article  ADS  Google Scholar 

  25. N. Sakai, M. Honma, H. Nakanishi, et al., Publ. Astron. Soc. Jpn. 64, 108 (2012).

    ADS  Google Scholar 

  26. A. S. Stepanishchev and V. V. Bobylev, Astron. Lett. 39, 185 (2013).

    Article  ADS  Google Scholar 

  27. J. P. Vallée, Astron. J. 135, 1301 (2008).

    Article  ADS  Google Scholar 

  28. Y. W. Wu, Y. Xu, K. M. Menten, et al., in Cosmic Masers-from OH to H0, Proceedings of the IAU Symposium No. 287, Ed. by R. S. Booth, E. M. L. Humphreys, and W. H. T. Vlemmings (Cambridge, 2012), p. 425.

  29. Y. Xu, J. J. Li, M. J. Reid, et al., arXiv: 1304.052 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Original Russian Text © V.V. Bobylev, A.T. Bajkova, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 11, pp. 843–848.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, V.V., Bajkova, A.T. Estimation of the pitch angle of the Galactic spiral pattern. Astron. Lett. 39, 759–764 (2013). https://doi.org/10.1134/S1063773713110017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713110017

Keywords

Navigation