Skip to main content
Log in

Magnetically active stars in Taurus-Auriga: Photometric variability and basic physical parameters

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have analyzed homogeneous long-term photometric observations of 28 well-known weakline T Tauri stars (WTTS) and 60 WTTS candidates detected by the ROSAT observatory toward the Taurus-Auriga star-forming region. We show that 22 known WTTS and 39 WTTS candidates exhibit periodic light variations that are attributable to the phenomenon of spotted rotational modulation. The rotation periods of these spotted stars lie within the range from 0.5 to 10 days. Significant differences between the long-term photometric behaviors of known WTTS and WTTS candidates have been found. We have calculated accurate luminosities, radii, masses, and ages for 74 stars. About 33% of the sample of WTTS candidates have ages younger than 10 Myr. The mean distance to 24 WTTS candidates with reliable estimates of their radii is shown to be 143 ± 26 pc. This is in excellent agreement with the adopted distance to the Taurus-Auriga star-forming region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ammler, V. Joergens, and R. Neuhäuser,, Astron. Astrophys. 440, 1127 (2005).

    Article  ADS  Google Scholar 

  2. C. Bertout and F. Genova, Astron. Astrophys. 460, 499 (2006).

    Article  ADS  Google Scholar 

  3. M. Bessell, Astron. J. 101, 662 (1991).

    Article  ADS  Google Scholar 

  4. J. Bouvier, R. Wichmann, K. Grankin, et al., Astron. Astrophys. 318, 495 (1997).

    ADS  Google Scholar 

  5. C. Broeg, V. Joergens, M. Fernández, et al., Astron. Astrophys. 450, 1135 (2006).

    Article  ADS  Google Scholar 

  6. C. J. Clarke and J. Bouvier, Mon.Not. R.Astron. Soc. 319, 457 (2000).

    Article  ADS  Google Scholar 

  7. M. Cohen and L. Kuhi, Astrophys. J. Suppl. Ser. 41, 743 (1979).

    Article  ADS  Google Scholar 

  8. S. A. Ehgamberdiev, A. K. Baijumanov, S. P. Ilyasov, et al., Astron. Astrophys. Suppl. Ser. 145, 293 (2000).

    Article  ADS  Google Scholar 

  9. K. N. Grankin, M. A. Ibragimov, V. B. Kondrat’ev, et al., Astron. Rep. 39, 799 (1995).

    ADS  Google Scholar 

  10. K. N. Grankin, Astron. Lett. 24, 497 (1998).

    ADS  Google Scholar 

  11. K. N. Grankin, Astron. Lett. 25, 526 (1999).

    ADS  Google Scholar 

  12. K. N. Grankin, S. A. Artemenko, and S. Y. Melnikov, Inform. Bull. Var. Stars, No. 5752 (2007a).

    Google Scholar 

  13. K. N. Grankin, S. Yu. Melnikov, J. Bouvier, et al., Astron. Astrophys. 461, 183 (2007b).

    Article  ADS  Google Scholar 

  14. K. N. Grankin, J. Bouvier, W. Herbst, et al., Astron. Astrophys. 479, 827 (2008).

    Article  ADS  Google Scholar 

  15. P. Hartigan, K. M. Strom, and S. E. Strom, Astrophysics 427, 961 (1994).

    Article  Google Scholar 

  16. C. de Jager and H. Nieuwenhuijzen, Astron. Astrophys. 177, 217 (1987).

    ADS  Google Scholar 

  17. H. L. Johnson, in Nebulae and Interstellar Matter, Ed. by B. M. Middlehurst and L. H. Aller (Univ. of Chicago Press, Chicago, 1968), p. 167.

  18. S. J. Kenyon and L. Hartmann, Astrophys. J. Suppl. Ser. 101, 117 (1995).

    Article  ADS  Google Scholar 

  19. P. Kervella and P. Fouqué,, Astron. Astrophys. 491, 855 (2008).

    Article  ADS  Google Scholar 

  20. R. Kohler and C. Leinert, Astron. Astrophys. 331, 977 (1998).

    ADS  Google Scholar 

  21. E. L. Martin, in Cool Stars in Clusters and Associations: Magnetic Activity and Age Indicators, Ed. by G. Micela, R. Pallavicini, and S. Sciortino, Mem. Soc. Astr. It. 68, 905 (1997).

    Google Scholar 

  22. E. L. Martin and A. Magazzù, Astron. Astrophys. 342, 173 (1999).

    ADS  Google Scholar 

  23. A. Massarotti, D.W. Latham, G. Torres, et al., Astron. J. 129, 2294 (2005).

    Article  ADS  Google Scholar 

  24. A. F. L. Nemec and J. M. Nemec, Astron. J. 90, 2317 (1985).

    Article  ADS  Google Scholar 

  25. D. C. Nguyen, R. Jayawardhana, M.H. van Kerkwijk, et al., Astrophysics 695, 1648 (2009).

    Article  Google Scholar 

  26. P. Sartoretti, R. A. Brown, D. W. Latham, et al., Astron. Astrophys. 334, 592 (1998).

    ADS  Google Scholar 

  27. L. Siess, E. Dufour, and M. Forestini, Astron. Astrophys. 358, 593 (2000).

    ADS  Google Scholar 

  28. R. W. Tanner, J. Royal Astron. Soc. Canada 42, 177 (1948).

    ADS  Google Scholar 

  29. A. Tokunaga, Allen’s Astrophysical Quantities, 4th ed., Ed. by A. N. Cox (Springer, New York, 2000), p. 143.

  30. G. Torres, J. Andersen, and A. Giménez,, Astron. Astrophys. Rev. 18, 67 (2010).

    Article  ADS  Google Scholar 

  31. R. Wichmann, J. Krautter, J. H. M. Schmitt, et al., Astron. Astrophys. 312, 439 (1996).

    ADS  Google Scholar 

  32. R. Wichmann, G. Torres, C. H. F. Melo, et al., Astron. Astrophys. 359, 181 (2000).

    ADS  Google Scholar 

  33. Li-Feng Xing, Xiao-Bin Zhang, and Jian-Yan Wei, Chin. J. Astron.Astrophys. 6, 716 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Grankin.

Additional information

Original Russian Text © K.N. Grankin, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 4, pp. 280–296.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grankin, K.N. Magnetically active stars in Taurus-Auriga: Photometric variability and basic physical parameters. Astron. Lett. 39, 251–266 (2013). https://doi.org/10.1134/S1063773713040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713040038

Keywords

Navigation