Skip to main content
Log in

Turbulent entrainment at the boundaries of the convective cores of main-sequence stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Extra mixing of matter in stellar interiors at the boundaries of the convective cores of mainsequence stars is considered for the first time using the physical model of turbulent entrainment developed by Arnett and collaborators based on three-dimensional hydrodynamical simulations. The model takes into account the energy that goes into mixing the matter of the convective core and layers stable against convection located above the core. It is shown that the extent of the region of extra mixing expressed in units of the pressure scale height is not constant, and decreases as the star evolves along the main sequence. Adequate allowance for extra mixing at the boundaries of convective cores is necessary to clarify the relative importance of different mixing mechanisms in stellar interiors, as well as to determine stellar parameters using asteroseismlogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maeder and J.-C. Mermilliod, Astron. Astrophys. 93, 136 (1981).

    ADS  Google Scholar 

  2. G. Meylan and A. Maeder, Astron. Astrophys. 108, 148 (1982).

    ADS  Google Scholar 

  3. J.-C. Mermilliod and A. Maeder, Astron. Astrophys. 158, 45 (1986).

    ADS  Google Scholar 

  4. M. Briquet, C. Aerts, A. Baglin, et al., Astron. Astrophys. 527, 112 (2011).

    Article  ADS  Google Scholar 

  5. A. Mazumdar, M. Briquet, M. Desmet and C. Aerts, Astron. Astrophys. 459, 589 (2006).

    Article  ADS  Google Scholar 

  6. C. Aerts, M. Briquet, P. Degroote, et al., Astron. Astrophys. 534, 98 (2011).

    Article  ADS  Google Scholar 

  7. C. Aerts, S. V. Marchenko, J. M. Matthews, et al., Astrophys. J. 642, 470 (2006).

    Article  ADS  Google Scholar 

  8. M. Briquet, T. Morel, A. Thoul, et al., Mon. Not. R. Astron. Soc. 381, 1482 (2007).

    Article  ADS  Google Scholar 

  9. M. Desmet, M. Briquet, A. Thoul, et al., Mon. Not. R. Astron. Soc. 396, 1460 (2009).

    Article  ADS  Google Scholar 

  10. A. A. Pamyatnykh, G. Handler, and W. A. Dziembowski, Mon. Not. R. Astron. Soc. 350, 1022 (2004).

    Article  ADS  Google Scholar 

  11. M.-A. Dupret, A. Thoul, R. Scuflaire, et al., Astron. Astrophys. 415, 251 (2004).

    Article  ADS  Google Scholar 

  12. P. Degroote, C. Aerts, A. Baglin, et al., Nature 464, 259 (2010).

    Article  ADS  Google Scholar 

  13. C. A. Meakin and D. Arnett, Astrophys. J. 667, 448 (2007).

    Article  ADS  Google Scholar 

  14. C. A. Meakin and D. Arnett, Astrophys. Space Sci. 328, 221 (2010).

    Article  ADS  Google Scholar 

  15. D. Arnett, C. A. Meakin, and P. A. Young, Astrophys. J. 690, 1715 (2009).

    Article  ADS  Google Scholar 

  16. P. F. Linden, J. Fluid Mech. 71, 385 (1975).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  18. B. Paczynski, Acta Astron. 20, 47 (1970).

    ADS  Google Scholar 

  19. E. I. Staritsin, Astron. Rep. 43, 592 (1999).

    ADS  Google Scholar 

  20. C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  21. D. R. Alexander and J. Ferguson, Astrophys. J. 437, 879 (1994).

    Article  ADS  Google Scholar 

  22. H. J. S. Fernando, Ann. Rev. Fluid Mech. 23, 455 (1991).

    Article  ADS  Google Scholar 

  23. E. Bohm-Vitenze, Z. Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  24. E. I. Staritsin, Astron. Rep. 45, 467 (2001).

    Article  ADS  Google Scholar 

  25. E. I. Staritsin, Astron. Lett. 35, 413 (2009).

    Article  ADS  Google Scholar 

  26. E. I. Staritsin, Astron. Lett. 33, 93 (2007).

    Article  ADS  Google Scholar 

  27. A. Miglio, J. Montalban, P. Eggenberger, and A. Noels, Astron. Nachr. 329, 529 (2008).

    Article  ADS  MATH  Google Scholar 

  28. A. Miglio, J. Montalban, A. Noels, and P. Eggenberger, Mon. Not. R. Astron. Soc. 386, 1487 (2008).

    Article  ADS  Google Scholar 

  29. J. Montalban, A. Miglio, P. Eggenberger, and A. Noels, Astron. Nachr. 329, 535 (2008).

    Article  ADS  Google Scholar 

  30. A. Miglio, J. Montalban, and M.-A. Dupret, Mon. Not. R. Astron. Soc. 375, L21 (2007).

    Article  ADS  Google Scholar 

  31. T. Zdravkov and A. A. Pamyatnykh, J. Phys. Conf. Ser. 118, 012079 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Staritsin.

Additional information

Original Russian Text © E.I. Staritsin, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 5, pp. 420–431.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staritsin, E.I. Turbulent entrainment at the boundaries of the convective cores of main-sequence stars. Astron. Rep. 57, 380–390 (2013). https://doi.org/10.1134/S1063772913050089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913050089

Keywords

Navigation