Skip to main content
Log in

The role of close passages of galaxies and the asymmetry of their dark haloes in the formation of their spiral patterns

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The influence of close passages of galaxies on the shapes of disk galaxies and the distribution of stars in them is studied for several types of interactions in the framework of the restricted N-body problem. Depending on the conditions adopted, either two spiral density waves or ring structures are formed in the stellar disk of the galaxy. These structures can generate star formation fronts with the corresponding shape, as are observed in disk galaxies. Our calculations can also be applied to study the influence of the passage of a nearby star on a protoplanetary disk. The formation of ring structures there could specify the type of planet formation in the outer regions of the planetary system and the distribution of semimajor axes for the planetary orbits. We use the same model to study the generation and evolution of spiral density waves in the stellar disks of galaxies as a result of the recently found asymmetry of the gravitational potential in the massive dark haloes in disk galaxies. The dipole component of the gravitational field of the halo can continuously permanently generate the spiral structure in disk galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Spitzer and W. Baade, Astrophys. J. 113, 413 (1951).

    Article  ADS  Google Scholar 

  2. F. Zwicky, Handb. Phys. 53, 373 (1959).

    Google Scholar 

  3. B. A. Vorontsov-Vel’yaminov, Astron. Tsirk., No. 192 (1958).

  4. H. Arp, Astrophys. J., Suppl. Ser. 123,1 (1966).

    Google Scholar 

  5. R. Larson and B. Tinsley, Astrophys. J. 219, 46 (1978).

    Article  ADS  Google Scholar 

  6. B. Soifer, J. Houck, and G. Neugebayer, Ann. Rev. Astron. Astrophys. 25, 187 (1987).

    Article  ADS  Google Scholar 

  7. A. Toomre and J. Toomre, Astrophys. J. 178, 623 (1972).

    Article  ADS  Google Scholar 

  8. R. A. Koopmann and J. D. P. Kenney, astro-ph/0511665 (2005).

  9. A. M. Fridman, V. L. Afanasiev, S. N. Dodonov, et al., Astron. Astrophys. 430, 67 (2005).

    Article  ADS  Google Scholar 

  10. Yu. N. Efremov, Sites of Star Formation in Galaxies (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  11. J. Dort, in Interstellar Matter in Galaxies, Ed. by L. Woltjer and W. Benjamin (New York, 1962), p. 234.

  12. B. Lindblad, Publ. Obs. Univ. Mich. 10, 59 (1951).

    Google Scholar 

  13. C. Lin and F. Shu, Proc. Nat. Acad. Sci. USA 55, 229 (1966).

    Article  ADS  Google Scholar 

  14. V. Korchagin, N. Orlova, N. Kikuchi, et al., astro-ph/0509708 (2005).

  15. B. Elmegreen and D. Elmegreen, Astrophys. J. 267, 31 (1983).

    Article  ADS  Google Scholar 

  16. E. Barnes, J. Sellwood, and A. Kosowsky, Astron. J. 128, 2724 (2004).

    Article  ADS  Google Scholar 

  17. B. Ryden, Astrophys. J. 601, 214 (2004).

    Article  ADS  Google Scholar 

  18. V. L. Polyachenko and E. V. Polyachenko, Astron. Zh. 81, 963 (2004) [Astron. Rep. 48, 877 (2004)].

    Google Scholar 

  19. M. Jalali and C. Hunter, Astrophys. J. 630, 804 (2005).

    Article  ADS  Google Scholar 

  20. M. Bureau, A. Burkert, P. Salucci, et al., Astrophys. J. 634, L145 (2005).

    Article  ADS  Google Scholar 

  21. F. Bournaud, F. Combes, and B. Semelin, astro-ph/0509126 (2005).

  22. F. Bournaud, F. Combes, and C. Jog, Astron. Astrophys. 418, L27 (2004).

    Article  ADS  Google Scholar 

  23. V. Springel and L. Hernquist, Astrophys. J. 622, L9 (2005).

    Article  ADS  Google Scholar 

  24. D. Mast, R. Diaz, and M. Paz, astro-ph/0505264 (2005).

  25. Yu. N. Efremov, astro-ph/0410702 (2004).

  26. J. Lee and X. Kang, astro-ph/0505179 (2005).

  27. B. Allgood, R. Flores, J. Primack, et al., astro-ph/0508497 (2005).

  28. G. Gentile, A. Burkert, P. Salucci, et al., Astrophys. J. 634, 145 (2005).

    Article  ADS  Google Scholar 

  29. J. Gallagher, D. Hunter, and A. Tutukov, Astrophys. J. (in press).

  30. M. Cappellari, R. Bacon, M. Bureau, et al., Mon. Not. R. Astron. Soc. 366, 1126 (2006).

    ADS  Google Scholar 

  31. M. Merrifield, R. Rand, and S. Meidt, astro-ph/0511069 (2005).

  32. J. Barnes and L. Hernquist, Ann. Rev. Astron. Astrophys. 30, 705 (1992).

    Article  ADS  Google Scholar 

  33. P. Appleton and C. Struck-Marcell, Astrophys. J. 312, 566 (1987).

    Article  ADS  Google Scholar 

  34. L. Hernquist and P. Quinn, Astrophys. J. 331, 682 (1988).

    Article  ADS  Google Scholar 

  35. E. J. Barton, B. C. Bromley, and M. J. Geller, in Galaxy Dynamics, Ed. by D. R. Merritt, M. Valluri, and J. A. Sellwood, Astron. Soc. Pac. Conf. Ser. 182, 459 (1999).

  36. C. Struck, M. Kaufman, E. Brinks, et al., astro-ph/0508660 (2005).

  37. J. Barnes, in Gas and Galaxy Evolution, Ed. by J. Hibbard, Astron. Soc. Pac. Conf. Ser. 240, 153 (2000).

  38. A. Escala, R. Lerson, P. Coppri, et al., Astrophys. J. 607, 765 (2004).

    Article  ADS  Google Scholar 

  39. J. Melbourne, S. Wright, M. Barczys, et al., Astrophys. J. 625, L27 (2005).

    Article  ADS  Google Scholar 

  40. K. Tran, P. van Dokkum, M. Franx, et al., astro-ph/0505355 (2005).

  41. V. Springel and L. Hernquist, Astrophys. J. 622, L9 (2005).

    Article  ADS  Google Scholar 

  42. D. L. Domingue, J. W. Sulentic, and A. Durbala, Astron. J. 129, 2579 (2005).

    Article  ADS  Google Scholar 

  43. A. Subramamian and T. Prabhu, Astrophys. J. 625, L47 (2005).

    Article  ADS  Google Scholar 

  44. M. Geha, P. Guhathakurta, and P. van den Marel, Astron. J. 129, 2617 (2005).

    Article  ADS  Google Scholar 

  45. O. K. Sil’chenko, astro-ph/0512305 (2005).

  46. C. Firmani and A. Tutukov, Astron. Astrophys. 288, 713 (1994).

    ADS  Google Scholar 

  47. E. P. Kurbatov, A. V. Tutukov, and B. M. Shustov, Astron. Zh. 82, 573 (2005) [Astron. Rep. 49, 510 (2005)].

    Google Scholar 

  48. I. Karachentsev, V. Karachentseva, W. Huchtmeier, et al., Astron. J. 127, 2031 (2004).

    Article  ADS  Google Scholar 

  49. A. Baldri, J. C. Rajmond, G. Fabbiano, et al., astro-ph/0509034 (2005).

  50. A. V. Tutukov, Astron. Zh. 82, 1 (2005) [Astron. Rep. 49, 13 (2005)].

    Google Scholar 

  51. M. Rees, Ann. Rev. Astron. Astrophys. 22, 471 (1984).

    Article  ADS  Google Scholar 

  52. C. S. Kochanek, E. Falko, and J. Munos, Astrophys. J. 510, 590 (1999).

    Article  ADS  Google Scholar 

  53. D. Mortlock, R. Webster, and P. Francis, Mon. Not. R. Astron. Soc. 309, 836 (1999).

    Article  ADS  Google Scholar 

  54. N. Bachall and R. Cen, Astrophys. J. 407, L49 (1993).

    Article  ADS  Google Scholar 

  55. A. Biviano, M. Girardi, G. Mardirossian, et al., Astrophys. J. 411, L73 (1993).

    Article  Google Scholar 

  56. M. Girardi, S. Borgani, G. Giuricin, et al., Astrophys. J. 506, 45 (1998).

    Article  ADS  Google Scholar 

  57. G. M. Voit, astro-ph/0410173 (2004).

  58. E. Pointecouteau, M. Arnaud, and G. Pratt, astro-ph/0501635 (2005).

  59. M. Kalinkov, T. Valchanov, I. Valtchanov, et al., astro-ph/0505091 (2005).

  60. K. Blindert, H. K. C. Yee, M. D. Gladders, et al., astro-ph/0404314 (2004).

  61. Y.-T. Lin and J. Mohr, Astrophys. J. 617, 879 (2004).

    Article  ADS  Google Scholar 

  62. J. Aguerri, O. Gerhard, M. Arnaboldi, et al., Astron. J. 129, 2585 (2005).

    Article  ADS  Google Scholar 

  63. F. Durret, G. B. Lima Neto, and W. Forman, Astron. Astrophys. 432, 809 (2005).

    Article  ADS  Google Scholar 

  64. S. Driver, J. Liske, N. Cross, et al., astro-ph/0503228 (2005).

  65. T. Goto, astro-ph/0503089 (2005).

  66. A. V. Tutukov, Astron. Rep. 49, 993 (2005).

    Article  ADS  Google Scholar 

  67. M. West, P. Cote, R. O. Marzke, et al., Nature 427, 31 (2004).

    Article  ADS  Google Scholar 

  68. C. Yamauchi and T. Goto, Mon. Not. R. Astron. Soc. 352, 815 (2004).

    Article  ADS  Google Scholar 

  69. S. S. McGaugh, astro-ph/0509305 (2005).

  70. R. F. Minchin, J. I. Davies, M. J. Disney, et al., astro-ph/0508153 (2005).

  71. H. J. Newberg and B. Yanny, astro-ph/0507671 (2005).

  72. M. Bureau, K. Freeman, D. Pfitzner, et al., Astron. J. 118, 2158 (1999).

    Article  ADS  Google Scholar 

  73. K. Bekki and K. Freeman, Astrophys. J. 574, L21 (2004).

    Article  ADS  Google Scholar 

  74. F. Masset and M. Bureau, Astrophys. J. 586, 152 (2003).

    Article  ADS  Google Scholar 

  75. V. Rubin, N. Thonnard, and W. Ford, Astrophys. J. 238, 471 (1980).

    Article  ADS  Google Scholar 

  76. A. Bosma, Astron. J. 86, 1791 (1981).

    Article  ADS  Google Scholar 

  77. S. McGaugh, astro-ph/0509305 (2005).

  78. J. Brownstein and J. Moffat, astro-ph/0506370 (2005).

  79. I. Thies, P. Kroupa, and C. Theis, astro-ph/0510007 (2005).

  80. A. M. Fridman, Pis’ma Astron. Zh. 4, 207 (1978) [Sov. Astron. Lett. 4, 113 (1978)].

    ADS  Google Scholar 

  81. A. V. Khoperskov, A. V. Zasov, and N. V. Tyurina, astro-ph/0306198 (2003).

  82. H. Jerjen, A. Kalnajs, and B. Binggeli, Astron. Astrophys. 358, 845 (2000).

    ADS  Google Scholar 

  83. F. Barazza, B. Binggeli, and H. Jerjen, Astron. Astrophys. 391, 823 (2002).

    Article  ADS  Google Scholar 

  84. B. F. Madore, astro-ph/0503560 (2005).

  85. M. Wetzstein, T. Naab, and A. Burkert, astro-ph/0510821 (2005).

  86. N. N. Gor’kavyĭ and A. M. Fridman, Physics of Planetary Rings (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  87. S. I. Ipatov, Migration of Selestial Bodies in the Solar System (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  88. M. A. Smirnov and B. V. Komberg, Pis’ma Astron. Zh. 4, 245 (1978) [Sov. Astron. Lett. 4, 133 (1978)].

    ADS  Google Scholar 

  89. P. Appleton, V. Charmandaris, C. Horellow, et al., Astrophys. J. 527, 143 (1999).

    Article  ADS  Google Scholar 

  90. Y. Gao, Q. Wang, P. Appleton, et al., Astrophys. J. 596, L171 (2003).

    Article  ADS  Google Scholar 

  91. T. H. Jarrett, M. Polletta, I. P. Fournon, et al., astro-ph/0510788 (2005).

  92. S. Hameed and N. Devereux, Astron. J. 129, 2597 (2005).

    Article  ADS  Google Scholar 

  93. A. Moiseev, D. Bizyaev, and E. Vorobyov, astro-ph/0501601 (2005).

  94. K. Gordon, J. Bailin, C. Engelbracht, et al., astro-ph/0601314 (2006).

  95. G. Schneider, B. Smith, E. Becklin, et al., Astrophys. J. 513, L127 (1999).

    Article  ADS  Google Scholar 

  96. P. Kalas, J. Graham, M. Clampin, et al., astro-ph/0601488 (2006).

  97. V. S. Safronov, Evolution of Pre-Planetary Cloud and Formation of the Earth and Planets (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  98. A. Tutukov, Astron. Astrophys. 70, 57 (1978).

    ADS  Google Scholar 

  99. A. G. W. Cameron, Icarus 1, 13 (1962).

    Article  MATH  ADS  Google Scholar 

  100. J. R. Lepine, Yu. N. Mishurov, and S. Yu. Dedikov, Astrophys. J. 546, 234 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 10, pp. 880–897.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Fedorova, A.V. The role of close passages of galaxies and the asymmetry of their dark haloes in the formation of their spiral patterns. Astron. Rep. 50, 785–801 (2006). https://doi.org/10.1134/S1063772906100039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906100039

PACS numbers

Navigation