Skip to main content
Log in

Streaming motions of molecular clouds, ionized hydrogen, and OB stars in the Cygnus arm

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The radial velocity fields of molecular clouds, OB stars, and ionized hydrogen in the Cygnus arm (l ∼ 72°–8°) are analyzed. A gradientΔV LSRlin the mean line-of-sight velocities of molecular clouds and ionized hydrogen due to differential Galactic rotation is detected, and two groups of physically and genetically associated objects moving with different line-of-sight velocities are identified. One of the two molecular-cloud complexes (l∼77.3°–80°) is located within 1 kpc of the Sun, closer to the inner edge of the arm, whereas the other complex (l∼78.5°–85°) lies 1–1.5 kpc from the Sun and is farther from the inner edge of the arm. The residual azimuthal velocities of the objects in both groups are analyzed. The residual azimuthal velocities of the first molecular-cloud complex are directed opposite to the Galactic rotation (V Θ ∼ −7 km/s), while those of the second complex are near zero or in the direction of Galactic rotation, independent of the distance to the complex (V Θ ≥ 1 km/s). Like the molecular clouds, stars of the Cygnus arm form two kinematic groups with similar azimuthal velocities. On the whole, the mean azimuthal velocities V Θ for the ionized hydrogen averaged over large areas agree with the velocities of either the first or second molecular-cloud complex. In terms of density-wave theory, the observed differences between the magnitudes and directions of the azimuthal velocities of the kinematic groups considered could be due to their different locations within the arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).

    Article  ADS  Google Scholar 

  2. W. W. Roberts, Astrophys. J. 158, 123 (1969).

    Article  ADS  Google Scholar 

  3. A. M. Mel’nik, T. G. Sitnik, A. K. Dambis, et al., Pis’ma Astron. Zh. 24, 689 (1998) [Astron. Lett. 24, 594 (1998)].

    ADS  Google Scholar 

  4. T. G. Sitnik and A. M. Mel’nik, Pis’ma Astron. Zh. 25, 194 (1999) [Astron. Lett. 25, 156 (1999)].

    Google Scholar 

  5. Yu. N. Efremov and T. G. Sitnik, Pis’ma Astron. Zh. 14, 817 (1988) [Sov. Astron. Lett. 14, 347 (1988)].

    ADS  Google Scholar 

  6. A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Pis’ma Astron. Zh. 21, 331 (1995) [Astron. Lett. 21, 291 (1995)].

    ADS  Google Scholar 

  7. T. G. Sitnik and A. M. Mel’nik, Pis’ma Astron. Zh. 22, 471 (1996) [Astron. Lett. 22, 422 (1996)].

    ADS  Google Scholar 

  8. E. V. Glushkova, A. K. Dambis, A. M. Melnik, and A. S. Rastorguev, Astron. Astrophys. 329, 514 (1998).

    ADS  Google Scholar 

  9. C. Blaha and R. M. Humphreys, Astron. J. 98, 1598 (1989).

    Article  ADS  Google Scholar 

  10. H. O. Leung and P. Thaddeus, Astrophys. J., Suppl. Ser. 81, 267 (1992).

    Article  ADS  Google Scholar 

  11. P. G. Kulikovskii, Stellar Astronomy (Nauka, Moscow, 1985).

    Google Scholar 

  12. M. I. Pashchenko, Astron. Zh. 50, 685 (1973) [Sov. Astron. 17, 438 (1973)].

    ADS  Google Scholar 

  13. O. E. H. Rydbeck, E. Kollberg, A. Hjalmarson, et al., Astron. Astrophys., Suppl. Ser. 31, 333 (1976).

    ADS  Google Scholar 

  14. A. Piepenbrink and H. J. Wendker, Astron. Astrophys. 191, 313 (1988).

    ADS  Google Scholar 

  15. Th. Neckel and G. Klare, Astron. Astrophys., Suppl. Ser. 42, 251 (1980).

    ADS  Google Scholar 

  16. T. M. Dame and P. Thaddeus, Astrophys. J. 297, 751 (1985).

    Article  ADS  Google Scholar 

  17. T. A. Lozinskaya, V. V. Pravdikova, T. G. Sitnik, et al., Astron. Zh. 75, 514 (1998) [Astron. Rep. 42, 453 (1998)].

    Google Scholar 

  18. I. Lundstrom and B. Stenholm, Astron. Astrophys., Suppl. Ser. 58, 163 (1984).

    ADS  Google Scholar 

  19. D. G. Turner and D. Forbes, Publ. Astron. Soc. Pac. 94, 789 (1982).

    ADS  Google Scholar 

  20. N. B. Kalandadze and L. P. Kolesnik, Astron. Astrophys. 32, 57 (1977).

    Google Scholar 

  21. M. Duflot, P. Figon, and N. Meyssonier, Astron. Astrophys., Suppl. Ser. 114, 269 (1995).

    ADS  Google Scholar 

  22. Ju. N. Efremov, Astron. Astrophys. Trans. 15, 3 (1998).

    ADS  Google Scholar 

  23. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Pis’ma Astron. Zh. 25, 602 (1999) [Astron. Lett. 25, 518 (1999)].

    Google Scholar 

  24. C. D. Garmany and R. E. Stencel, Astron. Astrophys., Suppl. Ser. 94, 214 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 78, No. 1, 2001, pp. 40–51.

Original Russian Text Copyright © 2001 by Sitnik, Mel’nik, Pravdikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitnik, T.G., Mel’nik, A.M. & Pravdikova, V.V. Streaming motions of molecular clouds, ionized hydrogen, and OB stars in the Cygnus arm. Astron. Rep. 45, 34–43 (2001). https://doi.org/10.1134/1.1336599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1336599

Keywords

Navigation