Skip to main content
Log in

A Combination of Electrochemical and Adsorption Techniques for Degradation and Removal of Pesticide Padan 95SP (95% Cartap) from Water

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The combination of electrochemical and adsorption methods has shown efficient reduction of total organic carbon (TOC) and removal of Padan 95SP (95% Cartap) from water due to its oxidation and adsorption on granular activated carbon. The influence of supporting electrolytes, flow rate, bed height, number of repeated adsorption cycles as well as initial concentration was studied in order to determine their effect on TOC and Cartap removal. The concentration of Cartap was determined by UV-vis spectroscopy according to 5,5′-dithiobis-(2-nitrobenzoic acid)-procedure. This combination of methods provides more than 90% of Cartap removal and approximately 75% of TOC reduction. Increase of the bed height and repeated adsorptive treatment of the solution do not increase the TOC removal remarkably. High performance liquid chromatography was used to characterize the formation of electrochemical by-products. Granular activated carbon used in the adsorption steps were examined before and after usage with FT-IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. Berg, H., Pesticide use in rice and rice-fish farms in the Mekong Delta, Vietnam, Crop Protect., 2001, vol. 20, p. 897.

    Article  CAS  Google Scholar 

  2. Tian, K., Ming, C., Dai, Y., and Ake, K.M.H., Fenton degradation of cartap hydrochloride: identification of the main intermediates and the degradation pathway, Water Sci. Technol., 2015, vol. 72, p. 1198.

    Article  CAS  Google Scholar 

  3. Choi, E., Cho, I.H., and Park, J., The effect of operational parameters on the photocatalytic degradation of pesticide, J. Environ. Sci. Health, 2004, vol. 39, p. 53.

    Article  Google Scholar 

  4. Cartap (Pesticides residues in food: 1978 evaluation). http://www.inchem.org/documents/jmpr/jmpmono/ v076pr08.htm. Accessed Oct. 2, 2018.

  5. Simon, R.G., Stöckl, M., Becker, D., Steinkamp, A.-D., Abt, C., Jungfer, C., Weidlich, C., Track, T., and Mangold, K.-M., Current to clean water—electrochemical solutions for groundwater, water, and wastewater treatment, Chem. Ing. Tech., 2018, vol. 90, p. 1832.

    Article  CAS  Google Scholar 

  6. Chiang, L.C., Chang, J.E., and Wen, T.C., Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate, Water Res., 1995, vol. 29, p. 671.

    Article  CAS  Google Scholar 

  7. Rajkumar, D., Palanivelu, K., and Balasubramanian, N., Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds, J. Environ. Eng. Sci., 2005, vol. 4, p. 1.

    Article  CAS  Google Scholar 

  8. Guzzella, L., Feretti, D., and Monarca, S., Advanced oxidation and adsorption technologies for organic micro-pollutant removal from lake water used as drinking-water supply, Water Res., 2002, vol. 36, p. 4307.

    Article  CAS  Google Scholar 

  9. Santhanam, M., Selvaraj, R., Annamalai, S., and Sundaram, M., Combined electrochemical, sunlight-induced oxidation and biological process for the treatment of chloride containing textile effluent, Chemosphere, 2017, vol. 186, p. 1026.

    Article  CAS  Google Scholar 

  10. Alafadehan, O.A., Junadu, O.W., Salami, L., and Popoola, O.T., Treatment of brewery wastewater effluent using activated carbon prepared from coconut shell, J. Appl. Sci. Technol., 2012, vol. 2, p. 178.

    Google Scholar 

  11. Drinking Water and Health, National Acad. Press (US), 1980, vol. 2.

  12. Ali, I., Water treatment by adsorption columns: evaluation at ground level, Sep. Purif. Rev., 2014, vol. 43, p. 175.

    Article  CAS  Google Scholar 

  13. Mazille, F. and Spuhler, D., Adsorption (Activated Carbon). https://www.sswm.info/sswm-university-course/ module-6-disaster-situations-planning-and-preparedness/further-resources-0/adsorption-%28activated- carbon%29. Accessed Aug. 19, 2018.

  14. de Ridder, D.J., Adsorption of organic micropollutants onto activated carbon and zeolites, Doctoral Thesis, Delft: Water Management Acad. Press, 2002.

  15. Brennan, J.K., Bandosz, T.J., Thomson, K.T., and Gubbins, K.E., Review: water in porous carbons, Physicochem. Eng. Aspects, 2001, vols. 187–188, p. 539.

    Article  Google Scholar 

  16. Holze, R., Carbon as electrocatalyst in electrochemical energy conversion—an overview, Proc. 4th Int. Carbon Conf., Baden-Baden, 1986.

  17. Lee, S.J., Caboni, P., Tomizawa, M., and Casida, J.E., Cartap hydrolysis relative to its action at the insect nicotinic channel, J. Agric. Food Chem., 2004, vol. 52, p. 95.

    Article  CAS  Google Scholar 

  18. Indian Standard no. IS 14159: Determination of cartap hydrochloride content (spectrophotometric method), Bureau of Indian Standards, 1994.

  19. Ellman, G.L., Tissue sulfhydryl groups, Arch. Biochem. Biophys., 1959, vol. 82, p. 70.

    Article  CAS  Google Scholar 

  20. Riddles, P.W., Blakeley, R.L., and Zerner, B., Reassessment of Ellman’s reagent, Methods Enzymol., 1983, vol. 91, p. 49.

    Article  CAS  Google Scholar 

  21. Hoang, N.T. and Holze, R., J. Appl. Electrochem., submitted.

  22. Patel, H., Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci., 2019, vol. 9, p. 45.

    Article  Google Scholar 

  23. Hawkins, G.B., Fixed Bed Adsorber Design Guidelines, GBHEnterprises, 2013.

  24. Analytical Method: Nitrate (direct measurement in the UV range) as per APHA 4500-\({\text{NO}}_{{\text{3}}}^{-}\)B. https://www.sigmaaldrich.com/technical-documents/articles/analytical- applications/photometry/nitrate-direct-measurement-in-the-uv-range-as-per-apha-4500-no3-b.html. Accessed March 7, 2019.

  25. Rice, E.W., Standard Methods for the Examination of Water and Wastewater, Washington, DC: American Public Health Association, 2012.

    Google Scholar 

  26. Strähle, J. and Schweda, E., Jander Blasius Einführung in das anorganisch-chemische Praktikum, 15th ed., Stuttgart: S. Hirzel Verlag, 2005.

    Google Scholar 

  27. Kraemer, E.O. and Stamm, A.J., Mohr’s method for the determination of silver and halogens in other than neutral solutions, J. Am. Chem. Soc., 1924, vol. 46, p. 2707.

    Article  Google Scholar 

  28. Machado, C.M.L., Braitt, A.H., Braitt, G.R., Rodrigues, E.A., and da Silveira Bueno, C.E., Analysis of active chlorine releasing and pH of sodium hypochlorite solutions used in Endodontics, Revista Sul-Brasileira de Odontologia RSBO, 2014, vol. 11, p. 252.

    Google Scholar 

  29. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.

    Article  CAS  Google Scholar 

  30. Choi, E., Cho, I.H., and Park, J., The effect of operational parameters on the photocatalytic degradation of pesticide, J. Environ. Sci. Health B, 2004, vol. 39, p. 53.

    Article  Google Scholar 

  31. for some suggestions see: Anonymous, Chapter 3: activated carbon column plant design. http://bibing.us.es/proyectos/abreproy/20087/fichero/CHAPTER+3.pdf. Accessed 19.09.2018.

  32. Wilaingam, K., Tanaka, S., Chularueanksorn, P., Suzuki, Y., Ono, R., and Fujii, S., Effect of anions on perfluorohexanoic acid adsorption onto anion exchange plolymers, non-ion exchange polymers and granular activated carbon, J. Jpn. Soc. Civil Eng. G(Environ. Res.), 2014, vol. 70, p. 65.

    Google Scholar 

  33. Galamos, M., Dano, M., Viglasova, E., Krivosudsky, L., Rosskopfova, O., Novak, I., Berek, D., and Rajec, P., Effect of competing anions on pertechnetate adsorption by activated carbon, J. Radioanal. Nucl. Chem., 2015, vol. 304, p. 1219.

    Article  Google Scholar 

  34. Ohtaki, H. and Radnai, T., Structure and dynamics of hydrated ions, Chem. Rev., 1993, vol. 93, p. 1157.

    Article  CAS  Google Scholar 

  35. Barret, J., Inorganic Chemistry in Aqueous Solution, Cambridge: Education, 2003.

    Google Scholar 

  36. Kieland, J., Individual activity coefficients of ions in aqueous solutions, J. Am. Chem. Soc., 1937, vol. 59, p. 1675.

    Article  Google Scholar 

  37. Chen, T.S., Tsai, R.W., Chen, Y.S., and Huang, K.L., Electrochemical degradation of tetracycline on BDD in aqueous solutions, Int. J. Electrochem. Sci., 2014, vol. 9, p. 8422.

    Google Scholar 

  38. Zhang, C., Liu, L., Wang, J., Rong, F., and Fu, D., Electrochemical degradation of ethidium bromide using boron-doped diamond electrode, Sep. Purif. Technol., 2013, vol. 107, p. 91.

    Article  CAS  Google Scholar 

  39. Gur-Reznik, S., Katz, I., and Dosoretz, C.G., Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents, Water Res., 2008, vol. 42, p. 1595.

    Article  CAS  Google Scholar 

  40. Lee, D., Hong, S.H., Paek, K.-H., and Ju, W.-T., Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment, Surf. Coat. Tech., 2005, vol. 200, p. 2277.

    Article  CAS  Google Scholar 

  41. Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., West Sussex: John Wiley & Sons, 2001.

    Google Scholar 

  42. Liu, G., Li, X., and Campos, L.C., Role of the functional groups in the adsorption of bisphenol A onto activated carbon: thermal modification and mechanism, J. Water Supply Res. T., 2017, vol. 66, p. 105.

    Article  Google Scholar 

  43. Mohammad, S.G. and Ahmed, S.M., Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media, Int. J. Ind. Chem., 2017, vol. 8, p. 121.

    Article  CAS  Google Scholar 

  44. Al-Qodah, Z. and Shawabkah, R., Production and characterization of granular activated carbon from activated sludge, Braz. J. Chem. Eng., 2009, vol. 26, p. 127.

    Article  CAS  Google Scholar 

  45. Yang, K. and Xing, B., Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application, Chem. Rev., 2010, vol. 110, p. 5989.

    Article  CAS  Google Scholar 

  46. Domínguez, C.M., Ocón, P., Quintanilla, A., Casas, J.A., and Rodriguez, J.J., Highly efficient application of activated carbon as catalyst for wet peroxide oxidation, Appl. Catal. B: Environ., 2013, vol.140-141, p. 663.

    Article  Google Scholar 

  47. Georgi, A. and Kopinke, F.-D., Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon, Appl. Catal. B: Environ., 2005, vol. 58, p. 9.L

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by Vietnam International Education Development and Chemnitz University of Technology (Germany). Dr. E. Dietzsch, M. Hofmann and Prof. Dr. M. Mehring (Chemnitz University of Technology) provided experimental support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Dedicated to V.V. Malev on the occasion of his 80th birthday in recognition of his numerous contributions to fundamental and applied electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Tien Hoang, Rudolf Holze A Combination of Electrochemical and Adsorption Techniques for Degradation and Removal of Pesticide Padan 95SP (95% Cartap) from Water. Russ J Electrochem 56, 492–505 (2020). https://doi.org/10.1134/S1023193520060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520060087

Keywords:

Navigation