Skip to main content
Log in

Phytohormones in algae

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In various algal taxa, essentially all known phytohormones were detected in concentrations comparable with their content in higher plants. The occurrence of diverse free and conjugated hormone forms substantiates the functioning of the complex system of metabolism and activity regulation of these compounds. In most cases, the spectrum of biological activities of algal hormones corresponds to the functions of higher plant hormones. Some physiological and biochemical processes in algal cells and tissues are under the control of several phytohormones. All these facts permit a consideration of the algal hormonal system as a full-value regulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IPA:

isopentenyladenine

References

  1. Polevoi, V.V., Fitogormony (Phytohormones), Leningrad: Leningr. Gos. Univ., 1982.

    Google Scholar 

  2. Polevoi, V.V., Rol’auksina v sistemakh regulyatsii u rastenii (The Role of Auxin in Regulatory Systems of Plants), Leningrad: Nauka, 1986.

    Google Scholar 

  3. Koch, K., Sucrose Metabolism: Regulatory Mechanisms and Pivotal Roles in Sugar Sensing and Plant Development, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 235–246.

    Article  PubMed  CAS  Google Scholar 

  4. Matoh, T., Kawaguchi, S., and Kobayashi, M., Ubiquity of a Borate-Rhamnogalacturonan II Complex in the Cell Walls of Higher Plants, Plant Cell Physiol., 1996, vol. 37, pp. 636–640.

    CAS  Google Scholar 

  5. Kobayashi, M., Nakagawa, H., Asaka, T., and Matoh, T., Borate-Rhamnogalacturonan II Binding Reinforced by Ca2+ Retains Pectic Polysaccharides in Higher-Plant Cell Walls, Plant Physiol., 1999, vol. 119, pp. 199–204.

    Article  PubMed  CAS  Google Scholar 

  6. Dyachok, J.V., Wiweger, M., Kenne, L., and von Arnold, S., Endogenous Nod-Factor-Like Signal Molecules Promote Early Somatic Embryo Development in Norway Spruce, Plant Physiol., 2002, vol. 128, pp. 523–533.

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi, J. and Ishibashi, M., Marine Natural Products and Marine Chemical Ecology, Comprehensive Natural Products Chemistry, vol. 8, Miscellaneous Natural Products Including Marine Natural Products, Pheromones, Plant Hormones and Aspects of Ecology, Barton, D.H.R., Nakanishi, K., and Meth-Cohn, O., Eds., Amsterdam: Elsevier, 1999, pp. 416–634.

    Google Scholar 

  8. Plant Hormones, Davis, P.J., Ed., Dordrecht: Kluwer, 2004.

    Google Scholar 

  9. Margelis, L., Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, San Francisco: Freeman, 1981.

    Google Scholar 

  10. Bradley, P.M., Plant Hormones Do Have a Role in Controlling Growth and Development of Algae, J. Phycol., 1991, vol. 27, pp. 317–321.

    Article  CAS  Google Scholar 

  11. Evans, L.V. and Trewavas, A.J., Is Algal Development Controlled by Plant Growth Substances? J. Phycol., 1991, vol. 27, pp. 322–326.

    Article  CAS  Google Scholar 

  12. Radley, M., Gibberellin-Like Substances in Plants, Nature, 1961, vol. 191, pp. 684–685.

    Article  PubMed  CAS  Google Scholar 

  13. Pryce, R.J., The Occurrence of Lunularic and Abscisic Acids in Plants, Phytochemistry, 1972, vol. 11, pp. 1759–1761.

    Article  CAS  Google Scholar 

  14. Provasoli, L. and Carlucci, A.F., Vitamins and Growth Regulators, Algal Physiology and Biochemistry, Stewart, W.D.P., Ed., Los Angeles: Berkeley, 1974, pp. 741–787.

    Google Scholar 

  15. Swaminathan, S. and Bock, R.M., Subcellular Localization of Cytokinins in Transfer Ribonucleic Acid, Plant Physiol., 1977, vol. 59, pp. 558–563.

    PubMed  CAS  Google Scholar 

  16. Niemann, D.I. and Dorffling, K., Growth Inhibitors and Growth Promoters in Enteromorpha compressa (Chlorophyta), J. Phycol., 1980, vol. 16, pp. 383–389.

    Article  CAS  Google Scholar 

  17. Bajguz, A. and Czerpak, R., Effect of Brassinosteroids on Growth and Proton Extrusion in the Alga Chlorella vulgaris Beijerinck (Chlorophyceae), J. Plant Growth Regul., 1996, vol. 15, pp. 153–156.

    Article  CAS  Google Scholar 

  18. Cooke, T.J., Poli, D., Sztein, A.E., and Cohen, J.D., Evolutionary Patterns in Auxin Action, Plant Mol. Biol., 2002, vol. 49, pp. 319–338.

    Article  PubMed  CAS  Google Scholar 

  19. Ördög, V., Stirk, W.A., van Staden, J., Novak, O., and Strnad, M., Endogenous Cytokinins in Three Genera of Microalgae from the Chlorophyta, J. Phycol., 2004, vol. 40, pp. 88–95.

    Google Scholar 

  20. Sitnik, K.M., Musatenko, L.I., Vasyuk, V.A., Vedenicheva, N.P., Generalova, V.M., Martin, G.G., and Nesterova, A.N., Gormonal’nii kompleks roslin i gribiv (Hormonal Complex in Plants and Fungi), Kiiv: Akademperiodika, 2003.

    Google Scholar 

  21. Schiewer, V., Auxinvorkommen und Auxinstoffwechsel bei Mehrzelligen Ostseealgen: 1. Zum Vorkommen von Indol-3-Essigsäure, Planta, 1967, vol. 74, pp. 313–323.

    Article  CAS  Google Scholar 

  22. Buggeln, R.C. and Craigie, J.S., Evaluation of Evidence for the Presence of Indole-3-Acetic Acid in Marine Algae, Planta, 1971, vol. 97, pp. 173–178.

    Article  CAS  Google Scholar 

  23. Stirk, W.A. and van Staden, J., Comparison of Cytokinin-and Auxin-Like Activity in Some Commercially Used Seaweed Extracts, J. Appl. Phycol., 1997, vol. 8, pp. 503–508.

    Article  Google Scholar 

  24. Basu, S., Sun, H., Brian, L., Quatrano, R.L., and Muday, G.K., Early Embryo Development in Fucus distichus Is Auxin Sensitive, Plant Physiol., 2002, vol. 130, pp. 292–302.

    Article  PubMed  CAS  Google Scholar 

  25. Polevoi, V.V., Tarakhovskaya, E.R., Maslov, Yu.I., and Polevoi, A.V., Induction of Polarity in Zygotes of Fucus vesiculosus L. by Auxin, Ontogenez, 2003, vol. 34, pp. 432–437.

    PubMed  CAS  Google Scholar 

  26. Ahmad, M.R. and Winter, A., Studies on the Hormonal Relationships of Algae in Pure Culture: 3. Tryptamine Is an Intermediate in the Conversion of Tryptophan to Indole-3-Acetic Acid by the Blue-Green Alga Chlorogloea fritschii, Planta, 1969, vol. 88, pp. 61–66.

    Article  CAS  Google Scholar 

  27. Jacobs, W.P., A Search for Some Angiosperm Hormones and Their Metabolites in Caulerpa paspaloides (Chlorophyta), J. Phycol., 1993, vol. 29, pp. 595–600.

    Article  CAS  Google Scholar 

  28. Stirk, W.A. and van Staden, J., Isolation and Identification of Cytokinins in a New Commercial Seaweed Product Made from Fucus serratus L., J. Appl. Phycol., 1997, vol. 9, pp. 327–330.

    Article  CAS  Google Scholar 

  29. Farooqi, A.H.A., Shukla, Y.N., Shukla, A., and Bhakuni, D.S., Cytokinins from Marine Organisms, Phytochemistry, 1990, vol. 29, pp. 2061–2063.

    Article  CAS  Google Scholar 

  30. Stirk, W.A., Ördög, V., van Staden, J., and Jäger, K., Cytokinin-and Auxin-Like Activity in Cyanophyta and Microalgae, J. Appl. Phycol., 2002, vol. 14, pp. 215–221.

    Article  CAS  Google Scholar 

  31. Stirk, W.A., Novak, O., Strnad, M., and van Staden, J., Cytokinins in Macroalgae, Plant Growth Regul., 2003, vol. 41, pp. 13–24.

    Article  CAS  Google Scholar 

  32. Chen, C.-M., Cytokinin Biosynthesis and Interconversion, Physiol. Plant., 1997, vol. 101, pp. 665–673.

    Article  CAS  Google Scholar 

  33. Tominaga, N., Takahata, M., and Tominaga, H., Effects of NaCl and KNO3 Concentrations on the Abscisic Acid Content of Dunaliella sp. (Chlorophyta), Hydrobiologya, 1993, vol. 267, pp. 163–168.

    Article  CAS  Google Scholar 

  34. Kobayashi, M., Hirai, N., Kurimura, Y., Ohigashi, H., and Tsuji, Y., Abscisic Acid-Dependent Algal Morphogenesis in the Unicellular Green Alga Haematococcus pluvialis, Plant Growth Regul., 1997, vol. 22, pp. 79–85.

    Article  CAS  Google Scholar 

  35. Nimura, K. and Mizuta, H., Inducible Effects of Abscisic Acid on Sporophyte Discs from Laminaria japonica Areschoug (Laminariales, Phaeophyceae), J. Appl. Phycol., 2002, vol. 14, pp. 159–163.

    Article  CAS  Google Scholar 

  36. Hiromichi, Y., Yayoi, I., Keiko (Doi), S., Hiroto, T., and Masahito, S., The Biological and Structural Similarity between Lunularic Acid and Abscisic Acid, BioSci. Biotech. Biochem., 2002, vol. 66, pp. 840–846.

    Article  Google Scholar 

  37. Setsuko, A.I. and Yoshimoto, O., Intracellular Localization of Lunularic Acid and Prelunularic Acid in Suspension Cultured Cells of Marchantia polymorpha, Plant Physiol., 1985, vol. 79, pp. 751–755.

    Google Scholar 

  38. Arnold, T.M., Targett, N.M., Tanner, C.E., Hatch, W.I., and Ferrari, K.E., Evidence for Methyl Jasmonate-Induced Phlorotannin Production in Fucus vesiculosus (Phaeophyceae), J. Phycol., 2001, vol. 37, pp. 1026–1029.

    Article  CAS  Google Scholar 

  39. Hamana, K., Matsuzaki, S., Niitsu, M., Samejima, K., and Nagashima, H., Polyamines in Unicellular Thermoacidophilic Red Alga Cyanidium caldarium, Phytochemistry, 1990, vol. 29, pp. 377–380.

    Article  CAS  Google Scholar 

  40. Badini, L., Pistocchi, R., and Bagni, N., Polyamine Transport in the Seaweed Ulva rigida (Chlorophyta), J. Phycol., 1994, vol. 30, pp. 599–605.

    Article  CAS  Google Scholar 

  41. Marián, F.D., García-Jiménez, P., and Robaina, R.R., Polyamines in Marine Macroalgae: Levels of Putrescine, Spermidine and Spermine in the Thalli and Changes in Their Concentration during Glycerol-Induced Cell Growth In Vitro, Physiol. Plant., 2000, vol. 110, pp. 530–534.

    Article  Google Scholar 

  42. Sacramento, A.T., García-Jiménez, P., Alcázar, R., Tiburcio, A.F., and Robaina, R.R., Influence of Polyamines on the Sporulation of Grateloupia (Halymeniaceae, Rhodophyta), J. Phycol., 2004, vol. 40, pp. 887–894.

    Article  CAS  Google Scholar 

  43. Yokota, T., Kim, S.K., Fukui, Y., Takahashi, N., Takeuchi, Y., and Takematsu, T., Brassinosteroids and Sterols from a Green Alga, Hydrodictyon reticulatum: Configuration at C-24, Phytochemistry, 1987, vol. 26, pp. 503–506.

    Article  CAS  Google Scholar 

  44. Bajguz, A. and Tretyn, A., The Chemical Characteristic and Distribution of Brassinosteroids in Plants, Phytochemistry, 2003, vol. 62, pp. 1027–1046.

    Article  PubMed  CAS  Google Scholar 

  45. Waaland, S.D. and Watson, B.A., Isolation of a Cell-Fusion Hormone from Griffithsia pacifica Kylin, a Red Alga, Planta, 1980, vol. 149, pp. 493–497.

    Article  CAS  Google Scholar 

  46. Watson, B.A. and Waaland, S.D., Partial Purification and Characterization of a Glycoprotein Cell Fusion Hormone from Griffithsia pacifica, a Red Alga, Plant Physiol., 1983, vol. 71, pp. 327–332.

    PubMed  CAS  Google Scholar 

  47. Arendarchuk, V.V., The Effect of IAA on Some Blue-Green Algae, Gidrobiol. Zh., 1974, vol. 10, pp. 64–69.

    CAS  Google Scholar 

  48. Yokoya, N.S. and Handro, W., Effects of Auxins and Cytokinins on Tissue Culture of Grateloupia dichotoma (Gigartinales, Rhodophyta), Hydrobiologya, 1996, vol. 326/327, pp. 393–400.

    Article  CAS  Google Scholar 

  49. García-Jiménez, P., Rodrigo, M., and Robaina, R.R., Influence of Plant Growth Regulators, Polyamines and Glycerol Interaction on Growth and Morphogenesis of Carposporelings of Grateloupia doryphora Cultured In Vitro, J. Appl. Phycol., 1998, vol. 10, pp. 95–100.

    Article  Google Scholar 

  50. Yokoya, N.S., Hirotaka, K., Hideki, O., and Takao, K., Effects of Environmental Factors and Plant Growth Regulators on Growth of the Red Alga Gracilaria vermiculophylla from Shikoku Island, Japan, Hydrobiologya, 1999, vol. 398/399, pp. 339–347.

    Article  CAS  Google Scholar 

  51. Hanisak, M.D., Effect of Indole-3-Acetic Acid on Growth of Codium fragile subsp. tomentosoides (Chlorophyceae) in Culture, J. Phycol., 1979, vol. 15, pp. 124–127.

    Article  CAS  Google Scholar 

  52. Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., and Huang, Y., Toxicity of 40 Herbicides to the Green Alga Chlorella vulgaris, Ecotoxicol. Environ. Safety, 2002, vol. 51, pp. 128–132.

    Article  PubMed  CAS  Google Scholar 

  53. Moss, B., Morphogenesis, Algal Physiology and Biochemistry, Stewart, W.D.P., Ed., Los Angeles: Berkeley, 1974, pp. 788–813.

    Google Scholar 

  54. Dring, M.J., Reproduction, Algal Physiology and Biochemistry, Stewart, W.D.P., Ed., Los Angeles: Berkeley, 1974, pp. 814–837.

    Google Scholar 

  55. Davidson, F.F., The Effects of Auxins on the Growth of Marine Algae, Am. J. Bot., 1950, vol. 37, pp. 502–510.

    Article  CAS  Google Scholar 

  56. Torrey, J.G. and Galun, E., Apolar Embryos of Fucus Resulting from Osmotic and Chemical Treatment, Am. J. Bot., 1970, vol. 57, pp. 111–119.

    Article  CAS  Google Scholar 

  57. Tarakhovskaya, E.R., Maslov, Yu.I., and Polevoi, V.V., Germination Regulation in Zygotes of Fucus vesiculosus L., Vestn. St. Petersburg. Gos. Univ., Ser. 3, Biology, 2003, no. 4, pp. 73–77.

  58. Tarakhovskaya, E.R. and Maslov, Yu.I., Effects of Some Physiology Active Compounds on Development of the Assimilatory Apparatus in Fucus vesiculosus L., Vestn. St. Petersburg. Gos. Univ., Ser. 3, Biology, 2004, no. 4, pp. 81–87.

  59. Tarakhovskaya, E.R. and Maslov, Yu.I., Effects of Phytohormones and Trophic Factors on Some Characteristics of the Photosynthetic Apparatus in Fucus vesiculosus and Euglena gracilis, Vestn. St. Petersburg. Gos. Univ., Ser. 3, Biology, 2005, no. 3, pp. 121–128.

  60. Padhy, S.N. and Pattanaik, H., The Effect of Hormones on Heterotrophic Growth of a Blue-Green Alga Westiellopsis prolifica, Hydrobiologya, 1976, vol. 50, pp. 99–100.

    CAS  Google Scholar 

  61. Dworetzky, B., Klein, R.M., and Cook, P.W., Effect of Growth Substances on “Apical Dominance” in Sphacelaria furcigera (Phaeophyta), J. Phycol., 1980, vol. 16, pp. 239–242.

    Article  CAS  Google Scholar 

  62. Jennings, R.C., Gibberellins as Endogenous Growth Regulators in Green and Brown Algae, Planta, 1968, vol. 80, pp. 34–42.

    Article  CAS  Google Scholar 

  63. Cowan, A.K. and Rose, P.D., Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina, Plant Physiol., 1991, vol. 97, pp. 798–803.

    Article  PubMed  CAS  Google Scholar 

  64. Van Alstyne, K.L., Whitman, S.L., and Ehlig, J.M., Differences in Herbivore Preferences, Phlorotannin Production and Nutritional Quality between Juvenile and Adult Tissues from Marine Brown Algae, Mar. Biol., 2001, vol. 139, pp. 201–210.

    Article  Google Scholar 

  65. Creelman, R.A. and Mullet, J.E., Oligosaccharins, Brassinolides, and Jasmonates: Nontraditional Regulators of Plant Growth, Development, and Gene Expression, Plant Cell, 1997, vol. 9, pp. 1211–1223.

    Article  PubMed  CAS  Google Scholar 

  66. Bajguz, A., Effect of Brassinosteroids on Nucleic Acids and Protein Content in Cultured Cells of Chlorella vulgaris, Plant Physiol. Biochem., 2000, vol. 38, pp. 209–215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.R. Tarakhovskaya, Yu.I. Maslov, M.F. Shishova, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 2, pp. 186–194.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarakhovskaya, E.R., Maslov, Y.I. & Shishova, M.F. Phytohormones in algae. Russ J Plant Physiol 54, 163–170 (2007). https://doi.org/10.1134/S1021443707020021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707020021

Key words

Navigation