Skip to main content
Log in

Beauty beyond the Eye: Color Centers in Diamond Particles for Imaging and Quantum Sensing Applications

  • REVIEW
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Fluorescent diamond particles are candidates for imaging and quantum sensing in a range of applications in biological, biomedical, and industrial fields. The fluorescence of these diamond particles originates from atomic scale defects (color centers) within the diamond lattice. Color centers in diamonds are bright and photostable. Recent advances in the synthesis and processing of diamond particles have greatly expanded the variety of available luminescent colors, making such particle suitable for multicolor imaging. Some color centers, such as the nitrogen vacancy center (NV), can exhibit several useful properties, including exceptionally long spin coherence times. The latter property has been actively exploited to manipulate NV electronic spins with magnetic fields and microwaves at resonant frequencies and then read out the spin states optically – all at room temperature. Additionally, the diamond particles themselves bring a host of additional properties, such as chemical and mechanical robustness and high biocompatibility. The combination of these properties makes fluorescent diamond particles unique among the other materials. Herein we briefly review some of the ongoing developments in the production of fluorescent diamond particles and also highlight both the recent advances and the most promising potential applications of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Zaitsev, A.M., Optical electronic transitions, in Optical Properties of Diamond: A Data Handbook, Heidelberg: Springer, 2001, p. 125.

    Book  Google Scholar 

  2. Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., and Walsworth, R.L., Rev. Mod. Phys., 2020, vol. 92, no. 1, p. 015004.

  3. Rembold, P., Oshnik, N., Müller, M.M., Montangero, S., Calarco, T., and Neu, E., AVS Quantum Sci., 2020, vol. 2, no. 2, p. 024701.

  4. Shenderova, O.A., Shames, A.I., Nunn, N.A., Torelli, M.D., Vlasov, I., and Zaitsev, A., J. Vac. Sci. Technol. B, 2019, vol. 37, no. 3, p. 030802.

  5. Torelli, M., Nunn, N., and Shenderova, O., Small, 2019, vol. 15, p. 1902151.

  6. Lv, X., Walton, J.H., Druga, E., Wang, F., Aguilar, A., McKnelly, T., Nazaryan, R., Liu, F.L., Wu, L., Shenderova, O., Vigneron, D.B., Meriles, C.A., Reimer, J.A., Pines, A., and Ajoy, A., Proc. Natl. Acad. Sci. U. S. A., 2021, vol. 118, no. 21, p. e2023579118.

  7. Ashfold, M.N.R., Goss, J.P., Green, B.L., May, P.W., Newton, M.E., and Peaker, C.V., Chem. Rev., 2020, vol. 120, no. 12, p. 5745.

    Article  CAS  PubMed  Google Scholar 

  8. Sun, J., Klug, D.D., and Martoňák, R., J. Chem. Phys., 2009, vol. 130, no. 19, p. 194512.

  9. Olson, D.W., Min. Eng., 2020, vol. 72, no. 7, p. 58.

    Google Scholar 

  10. Jung, H.-S. and Neuman, K.C., Nanomaterials, 2021, vol. 11, no. 1, p. 153.

    Article  CAS  PubMed Central  Google Scholar 

  11. Szunerits, S. and Boukherroub, R., Functionalization of diamond surfaces for medical applications, in Diamond-Based Materials for Biomedical Applications, Narayan, R., Ed., New York: Woodhead, 2013, p. 25.

    Google Scholar 

  12. Boudou, J.-P., Curmi, P.A., Jelezko, F., Wrachtrup, J., Aubert, P., Sennour, M., Balasubramanian, G., Reuter, R., Thorel, A., and Gaffet, E., Nanotechnology, 2009, vol. 20, no. 23, p. 235602.

  13. Yu, S.J., Kang, M.W., Chang, H.C., Chen, K.M., and Yu, Y.C., J. Am. Chem. Soc., 2005, vol. 127, no. 50, p. 17604.

    Article  CAS  PubMed  Google Scholar 

  14. Chang, Y.R., Lee, H.Y., Chen, K., Chang, C.C., Tsai, D.S., Fu, C.C., Lim, T.S., Tzeng, Y.K., Fang, C.Y., Han, C.C., Chang, H.C., and Fann, W., Nat. Nanotechnol., 2008, vol. 3, no. 5, p. 284.

    Article  CAS  PubMed  Google Scholar 

  15. Wee, T.-L., Mau, Y.-W., Fang, C.-Y., Hsu, H.-L., Han, C.-C., and Chang, H.-C., Diamond Relat. Mater., 2009, vol. 18, no. 2, p. 5896.

    Article  CAS  Google Scholar 

  16. Shames, A.I., Dalis, A., Greentree, A.D., Gibson, B.C., Abe, H., Ohshima, T., Shenderova, O., Zaitsev, A., and Reineck, P., Adv. Opt. Mater., 2020, vol. 8, no. 23, p. 2001047.

  17. Gerstenhaber, J.A., Marcinkiewicz, C., Barone, F.C., Sternberg, M., D’Andrea, M.R., Lelkes, P.I., and Feuerstein, G.Z., Int. J. Nanomed., 2019, vol. 14, p. 6451.

    Article  CAS  Google Scholar 

  18. Abdullahi, I.M., Langenderfer, M., Shenderova, O., Nunn, N., Torelli, M.D., Johnson, C.E., and Mochalin, V.N., Carbon, 2020, vol. 164, p. 442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torelli, M.D., Rickard, A.G., Backer, M.V., Filonov, D.S., Nunn, N.A., Kinev, A.V., Backer, J.M., Palmer, G.M., and Shenderova, O.A., Bioconjugate Chem., 2019, vol. 30, no. 3, p. 604.

    Article  CAS  Google Scholar 

  20. Reineck, P., Francis, A., Orth, A., Lau, D.W.M., Nixon-Luke, R.D.V., Rastogi, I.D., Razali, W.A.W., Cordina, N.M., Parker, L.M., Sreenivasan, V.K.A., Brown, L.J., and Gibson, B.C., Adv. Opt. Mater., 2016, vol. 4, no. 10, p. 1549.

    Article  CAS  Google Scholar 

  21. Toyli, D.M., Christle, D.J., Alkauskas, A., Buckley, B.B., Van de Walle, C.G., and Awschalom, D.D., Phys. Rev. X, 2012, vol. 2, no. 3, p. 031001.

  22. Toyli, D.M., de las Casas, C.F., Christle, D.J., Dobrovitski, V.V., and Awschalom, D.D., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 21, p. 8417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plakhotnik, T., Doherty, M.W., Cole, J.H., Chapman, R., Manson, N.B., Nano Lett., 2014, vol. 14, no. 9, p. 4989.

    Article  CAS  PubMed  Google Scholar 

  24. Doherty, M.W., Struzhkin, V.V., Simpson, D.A., McGuinness, L.P., Meng, Y., Stacey, A., Karle, T.J., Hemley, R.J., Manson, N.B., Hollenberg, L.C.L., and Prawer, S., Phys. Rev. Lett., 2014, vol. 112, no. 4, p. 047601.

  25. Ivády, V., Simon, T., Maze, J.R., Abrikosov, I.A., and Gali, A., Phys. Rev. B, 2014, vol. 90, no. 23, p. 235205.

  26. Hsieh, S., Bhattacharyya, P., Zu, C., Mittiga, T., Smart, T.J., Machado, F., Kobrin, B., Höhn, T.O., Rui, N.Z., Kamrani, M., Chatterjee, S., Choi, S., Zaletel, M., Struzhkin, V.V., Moore, J.E., Levitas, V.I., Jeanloz, R., and Yao, N.Y., Science, 2019, vol. 366, no. 6471, p. 1349.

    Article  CAS  PubMed  Google Scholar 

  27. Crane, M.J., Smith, B.E., Meisenheimer, P.B., Zhou, X., Stroud, R.M., James Davis, E., and Pauzauskie, P.J., Diamond Relat. Mater., 2018, vol. 87, p. 134.

    Article  CAS  Google Scholar 

  28. Schrand, A.M., Hens, S.A.C., Shenderova, O.A., Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, nos. 1–2, p. 18.

    Article  CAS  Google Scholar 

  29. Moore, L., Yang, J., Lan, T.T., Osawa, E., Lee, D.K., Johnson, W.D., Xi, J., Chow, E.K., and Ho, D., ACS Nano, 2016, vol. 10, no. 8, p. 7385.

    Article  CAS  PubMed  Google Scholar 

  30. Vaijayanthimala, V., Lee, D.K., Kim, S.V., Yen, A., Tsai, N., Ho, D., Chang, H.C., and Shenderova, O., Expert Opin. Drug Delivery, 2015, vol. 12, no. 5, p. 735.

    Article  CAS  Google Scholar 

  31. Barone, F.C., Marcinkiewicz, C., Li, J., Sternberg, M., Lelkes, P.I., Dikin, D.A., Bergold, P.J., Gerstenhaber, J.A., and Feuerstein, G., Int. J. Nanomed., 2018, vol. 13, p. 5449.

    Article  CAS  Google Scholar 

  32. Hardman, R., Environ. Health Perspect., 2006, vol. 114, no. 2, p. 165.

    Article  PubMed  Google Scholar 

  33. Derfus, A.M., Chan, W.C.W., and Bhatia, S.N., Nano Lett., 2004, vol. 4, no. 1, p. 11.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y., Zhao, Y., Sun, B., and Chen, C., Acc. Chem. Res., 2013, vol. 46, no. 3, p. 702.

    Article  CAS  PubMed  Google Scholar 

  35. Müller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B., and Lison, D., Toxicol. Appl. Pharmacol., 2005, vol. 207, no. 3, p. 221.

    Article  PubMed  CAS  Google Scholar 

  36. Kolosnjaj, J., Szwarc, H., and Moussa, F., Adv. Exp. Med. Biol., 2007, vol. 620, p. 168.

    Article  PubMed  Google Scholar 

  37. Meinhardt, T., Lang, D., Dill, H., Krueger, A., Adv. Funct. Mater., 2011, vol. 21, p. 494.

    Article  CAS  Google Scholar 

  38. Rehor, I., Mackova, H., Filippov, S.K., Kucka, J., Proks, V., Slegerova, J., Turner, S., van Tendeloo, G., Ledvina, M., Hruby, M., and Cigler, P., ChemPlusChem, 2014, vol. 79, no. 1, p. 21.

    Article  CAS  PubMed  Google Scholar 

  39. Gaillard, C., Girard, H.A., Falck, C., Paget, V., Simic, V., Ugolin, N., Bergonzo, P., Chevillard, S., and Arnault, J.C., RSC Adv., 2014, vol. 4, no. 7, p. 3566.

    Article  CAS  Google Scholar 

  40. Firestein, R., Marcinkiewicz, C., Nie, L., Chua, H., Velazquez, Q.I., Torelli, M., Sternberg, M., Gligorijevic, B., Shenderova, O., Schirhagl, R., and Feuerstein, G.Z., Nanotechnol., Sci. Appl., 2021, vol. 14, p. 139.

    Article  Google Scholar 

  41. Suarez-Kelly, L.P., Sun, S.H., Ren, C., Rampersaud, I.V., Albertson, D., Duggan, M.C., Noel, T.C., Courtney, N., Buteyn, N.J., Moritz, C., Yu, L., Yildiz, V.O., Butchar, J.P., Tridandapani, S., Rampersaud, A.A., and Carson, W.E., 3rd, ACS Appl. Nano. Mater., 2021, vol. 4, no. 3, p. 3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, B.-M., Lin, H.-H., Su, L.-J., Lin, W.-D., Lin, R.-J., Tzeng, Y.-K., Lee, R.T., Lee, Y.C., Yu, A.L., and Chang, H.-C., Adv. Funct. Mater., 2013, vol. 23, no. 46, p. 5737.

    Article  CAS  Google Scholar 

  43. Romanova, E.E., Akiel, R., Cho, F.H., and Takahashi, S., J. Phys. Chem. A, 2013, vol. 117, no. 46, p. 11933.

    Article  CAS  PubMed  Google Scholar 

  44. Barton, J., Gulka, M., Tarabek, J., Mindarava, Y., Wang, Z., Schimer, J., Raabova, H., Bednar, J., Plenio, M.B., Jelezko, F., Nesladek, M., and Cigler, P., ACS Nano, 2020, vol. 14, no. 10, p. 12938.

    Article  CAS  PubMed  Google Scholar 

  45. Rehor, I., Slegerova, J., Kucka, J., Proks, V., Petrakova, V., Adam, M.-P., Treussart, F., Turner, S., Bals, S., Sacha, P., Ledvina, M., Wen, A.M., Steinmetz, N.F., and Cigler, P., Small, 2014, vol. 10, no. 6, p. 1106.

    Article  CAS  PubMed  Google Scholar 

  46. Prabhakar, N., Näreoja, T., von Haartman, E., Karaman, D.Ş., Jiang, H., Koho, S., Dolenko, T.A., Hänninen, P.E., Vlasov, D.I., Ralchenko, V.G., Hosomi, S., Vlasov, I.I., Sahlgren, C., and Rosenholm, J.M., Nanoscale, 2013, vol. 5, no. 9, p. 3713.

    Article  CAS  PubMed  Google Scholar 

  47. Bumb, A., Sarkar, S.K., Billington, N., Brechbiel, M.W., and Neuman, K.C., J. Am. Chem. Soc., 2013, vol. 135, no. 21, p. 7815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jung, H.-S., Cho, K.-J., Seol, Y., Takagi, Y., Dittmore, A., Roche, P.A., and Neuman, K.C., Adv. Funct. Mater., 2018, vol. 28, no. 33, p. 1801252.

  49. Zhao, L., Nakae, Y., Qin, H., Ito, T., Kimura, T., Kojima, H., Chan, L., and Komatsu, N., Beilstein J. Org. Chem., 2014, vol. 10, p. 707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhao, L., Takimoto, T., Ito, M., Kitagawa, N., Kimura, T., and Komatsu, N., Angew. Chem., Int. Ed., 2011, vol. 50, no. 6, p. 1388.

    Article  CAS  Google Scholar 

  51. Wang, W., Zou, Y., López-Moreno, A., Jiang, Y., Wen, F., Wang, H.-X., and Komatsu, N., ChemNanoMat, 2020, vol. 6, no. 9, p. 1332.

    Article  CAS  Google Scholar 

  52. Krueger, A. and Lang, D., Adv. Funct. Mater. 2012, vol. 22, no. 5, p. 890.

    Article  CAS  Google Scholar 

  53. Reina, G., Zhao, L., Bianco, A., and Komatsu, N., Angew. Chem., Int. Ed., 2019, vol. 58, no. 50, p. 17918.

    Article  CAS  Google Scholar 

  54. Neburkova, J., Vavra, J., Raabova, H., Pramanik, G., Havlik, J., and Cigler, P., Nanodiamonds embedded in shells, in Nanodiamonds, Arnault, J.-C., Ed., Amsterdam: Elsevier, 2017, p. 339.

    Google Scholar 

  55. Yi, J., Manna, A., Barr, V.A., Hong, J., Neuman, K.C., and Samelson, L.E., Mol. Biol. Cell, 2016, vol. 27, no. 22, p. 3591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van der Laan, K.J., Naulleau, J., Damle, V.G., Sigaeva, A., Jamot, N., Perona-Martinez, F.P., Chipaux, M., and Schirhagl, R., Anal. Chem., 2018, vol. 90, no. 22, p. 13506.

    Article  CAS  PubMed  Google Scholar 

  57. Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A.V., and Rabeau, J.R., Nat. Nanotechnol., 2010, vol. 5, no. 5, p. 345.

    Article  CAS  PubMed  Google Scholar 

  58. Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., and Hollenberg, L.C.L., Phys. Rep., 2013, vol. 528, no. 1, p. 1.

    Article  CAS  Google Scholar 

  59. Gali, Á., Nanophotonics, 2019, vol. 8, no. 11, p. 1907.

    Article  CAS  Google Scholar 

  60. Doherty, M.W., Manson, N.B., Delaney, P., and Hollenberg, L.C.L., New J. Phys., 2011, vol. 13, no. 2, p. 025019.

  61. Ivády, V., Zheng, H., Wickenbrock, A., Bougas, L., Chatzidrosos, G., Nakamura, K., Sumiya, H., Ohshima, T., Isoya, J., Budker, D., Abrikosov, I.A., and Gali, A., Phys. Rev. B, 2021, vol. 103, no. 3, p. 035307.

  62. Jeong, K., J. Korean Magn. Reson. Soc., 2016, vol. 20, p. 114.

    Article  Google Scholar 

  63. Acosta, V.M., Jarmola, A., Bauch, E., and Budker, D., Phys. Rev. B, 2010, vol. 82, no. 20, p. 201202.

  64. Robledo, L., Bernien, H., Sar, T.V.D., and Hanson, R., New J. Phys., 2011, vol. 13, no. 2, p. 025013.

  65. Harrison, J., Sellars, M.J., and Manson, N.B., Diamond Relat. Mater., 2006, vol. 15, no. 4, p. 586.

    Article  CAS  Google Scholar 

  66. Thiering, G. and Gali, A., Phys. Rev. B, 2018, vol. 98, no. 8, p. 085207.

  67. Manson, N.B., Harrison, J.P., and Sellars, M.J., Phys. Rev. B, 2006, vol. 74, no. 10, p. 104303.

  68. Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P.A., Sennour, M., Thorel, A., Börsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P.R., Jelezko, F., and Wrachtrup, J., ACS Nano, 2009, vol. 3, no. 7, p. 1959.

    Article  CAS  PubMed  Google Scholar 

  69. Tetienne, J.P., Rondin, L., Spinicelli, P., Chipaux, M., Debuisschert, T., Roch, J.F., Jacques, V., New J. Phys., 2012, vol. 14, no. 10, p. 103033.

  70. Steinert, S., Ziem, F., Hall, L.T., Zappe, A., Schweikert, M., Götz, N., Aird, A., Balasubramanian, G., Hollenberg, L., and Wrachtrup, J., Nat. Commun., 2013, vol. 4, no. 1, p. 1607.

    Article  CAS  PubMed  Google Scholar 

  71. Tetienne, J.P., Hingant, T., Rondin, L., Cavaillès, A., Mayer, L., Dantelle, G., Gacoin, T., Wrachtrup, J., Roch, J.F., and Jacques, V., Phys. Rev. B, 2013, vol. 87, no. 23, p. 235436.

  72. Nie, L., Nusantara, A.C., Damle, V.G., Sharmin, R., Evans, E.P.P., Hemelaar, S.R., van der Laan, K.J., Li, R., Perona Martinez, F.P., Vedelaar, T., Chipaux, M., and Schirhagl, R., Sci. Adv., 2021, vol. 7, no. 21. https://doi.org/10.1126/sciadv.abf0573

  73. Morita, A., Nusantara, A.C., Perona Martinez, F.P., Hamoh, T., Damle, V.G., van der Laan, K.J., Sigaeva, A., Vedelaar, T., Chang, M., Chipaux, M., and Schirhagl, R., arXiv:2007.16130, 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200716130M. Accessed July 01, 2020.

  74. Chapman, R. and Plakhoitnik, T., Opt. Lett., 2013, vol. 38, no. 11, p. 1847.

    Article  CAS  PubMed  Google Scholar 

  75. Lilly Thankamony, A.S., Wittmann, J.J., Kaushik, M., and Corzilius, B., Prog. Nucl. Magn. Reson. Spectrosc., 2017, vols. 102–103, p. 120.

    Article  PubMed  CAS  Google Scholar 

  76. Kovtunov, K.V., Koptyug, I.V., Fekete, M., Duckett, S.B., Theis, T., Joalland, B., and Chekmenev, E.Y., Angew. Chem., Int. Ed., 2020, vol. 59, no. 41, p. 17788.

    Article  CAS  Google Scholar 

  77. Mewis, R.E., Magn. Reson. Chem., 2015, vol. 53, no. 10, p. 789.

    Article  CAS  PubMed  Google Scholar 

  78. Barskiy, D.A., Coffey, A.M., Nikolaou, P., Mikhaylov, D.M., Goodson, B.M., Branca, R.T., Lu, G.J., Shapiro, M.G., Telkki, V.-V., Zhivonitko, V.V., Koptyug, I.V., Salnikov, O.G., Kovtunov, K.V., Bukhtiyarov, V.I., Rosen, M.S., Barlow, M.J., Safavi, S., Hall, I.P., Schröder, L., and Chekmenev, E.Y., Chem.—Eur. J., 2017, vol. 23, no. 4, p. 725.

    Article  CAS  PubMed  Google Scholar 

  79. Ajoy, A., Liu, K., Nazaryan, R., Lv, X., Zangara, P.R., Safvati, B., Wang, G., Arnold, D., Li, G., Lin, A., Raghavan, P., Druga, E., Dhomkar, S., Pagliero, D., Reimer, J.A., Suter, D., Meriles, C.A., and Pines, A., Sci. Adv., 2018, vol. 4, no. 5, p. eaar5492.

  80. Ajoy, A., Nazaryan, R., Liu, K., Lv, X., Safvati, B., Wang, G., Druga, E., Reimer, J.A., Suter, D., Ramanathan, C., Meriles, C.A., and Pines, A., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 42, p. 10576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zangara, P.R., Dhomkar, S., Ajoy, A., Liu, K., Nazaryan, R., Pagliero, D., Suter, D., Reimer, J.A., Pines, A., and Meriles, C.A., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 7, p. 2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henshaw, J., Pagliero, D., Zangara, P.R., Franzoni, M.B., Ajoy, A., Acosta, R.H., Reimer, J.A., Pines, A., and Meriles, C.A., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 37, p. 18334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ajoy, A., Safvati, B., Nazaryan, R., Oon, J.T., Han, B., Raghavan, P., Nirodi, R., Aguilar, A., Liu, K., Cai, X., Lv, X., Druga, E., Ramanathan, C., Reimer, J.A., Meriles, C.A., Suter, D., and Pines, A., Nat. Commun., 2019, vol. 10, no. 1, p. 5160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fernández-Acebal, P., Rosolio, O., Scheuer, J., Müller, C., Müller, S., Schmitt, S., McGuinness, L.P., Schwarz, I., Chen, Q., Retzker, A., Naydenov, B., Jelezko, F., and Plenio, M.B., Nano Lett., 2018, vol. 18, no. 3, p. 1882.

    Article  PubMed  CAS  Google Scholar 

  85. Naydenov, B., Reinhard, F., Lämmle, A., Richter, V., Kalish, R., D’Haenens-Johansson, U.F.S., Newton, M., Jelezko, F., and Wrachtrup, J., Appl. Phys. Lett., 2010, vol. 97, no. 24, p. 242511.

  86. Yamamoto, T., Umeda, T., Watanabe, K., Onoda, S., Markham, M.L., Twitchen, D.J., Naydenov, B., McGuinness, L.P., Teraji, T., Koizumi, S., Dolde, F., Fedder, H., Honert, J., Wrachtrup, J., Ohshima, T., Jelezko, F., and Isoya, J., Phys. Rev. B, 2013, vol. 88, no. 7, p. 075206.

  87. Tetienne, J.P., de Gille, R.W., Broadway, D.A., Teraji, T., Lillie, S.E., McCoey, J.M., Dontschuk, N., Hall, L.T., Stacey, A., Simpson, D.A., and Hollenberg, L.C.L., Phys. Rev. B, 2018, vol. 97, no. 8, p. 085402.

  88. Shames, A.I., Smirnov, A.I., Milikisiyants, S., Danilov, E.O., Nunn, N., McGuire, G., Torelli, M.D., and Shenderova, O., J. Phys. Chem. C, 2017, vol. 121, no. 40, p. 22335.

    Article  CAS  Google Scholar 

  89. Dei Cas, L., Zeldin, S., Nunn, N., Torelli, M., Shames, A.I., Zaitsev, A.M., and Shenderova, O., Adv. Funct. Mater., 2019, vol. 29, no. 19, p. 1808362.

  90. Gierth, M., Krespach, V., Shames, A.I., Raghavan, P., Druga, E., Nunn, N., Torelli, M., Nirodi, R., Le, S., Zhao, R., Aguilar, A., Lv, X., Shen, M., Meriles, C.A., Reimer, J.A., Zaitsev, A., Pines, A., Shenderova, O., and Ajoy, A., Adv. Quantum Technol., 2020, vol. 3, no. 10, p. 2000050.

  91. Bernholc, J., Antonelli, A., Del Sole, T.M., Bar-Yam, Y., and Pantelides, S.T., Phys. Rev. Lett., 1988, vol. 61, no. 23, p. 2689.

    Article  CAS  PubMed  Google Scholar 

  92. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., and Sinnott, S.B., J. Phys.: Condens. Matter, 2002, vol. 14, no. 4, p. 783.

    CAS  Google Scholar 

  93. Zhang, B., Wu, X., Appl. Phys. Lett., 2012, vol. 100, no. 5, p. 051901.

  94. Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., and Borczyskowski, C.v., Science, 1997, vol. 276, no. 5321, p. 2012.

    Article  CAS  Google Scholar 

  95. Beveratos, A., Kühn, S., Brouri, R., Gacoin, T., Poizat, J.P., and Grangier, P., Eur. Phys. J. D, 2002, vol. 18, no. 2, p. 191.

    CAS  Google Scholar 

  96. Treussart, F., Jacques, V., Wu, E., Gacoin, T., Grangier, P., and Roch, J.F., Phys. B (Amstaerdam, Neth.), 2006, vol. 376–377, p. 926.

    Google Scholar 

  97. Shenderova, O.A., Nunn, N.A., Torelli, M.D., McGuire, G.E., Shames, A.I., Zaitsev, A.M., Phys. B (Amstaerdam, Neth.), 2020, vol. 579, p. 411868.

  98. Boudou, J.P., Tisler, J., Reuter, R., Thorel, A., Curmi, P.A., Jelezko, F., and Wrachtrup, J., Diamond Relat. Mater., 2013, vol. 37, p. 80.

    Article  CAS  Google Scholar 

  99. Yokota, Y., Kotsuka, H., Sogi, T., Ma, J.S., Hiraki, A., Kawarada, H., Matsuda, K., and Hatada, M., Diamond Relat. Mater., 1992, vol. 1, no. 5, p. 470.

    Article  CAS  Google Scholar 

  100. Huang, Z., Li, W.D., Santori, C., Acosta, V.M., Faraon, A., Ishikawa, T., Wu, W., Winston, D., Williams, R.S., and Beausoleil, R.G., Appl. Phys. Lett., 2013, vol. 103, no. 8, p. 081906.

  101. Wee, T.-L., Tzeng, Y.-K., Han, C.-C., Chang, H.-C., Fann, W., Hsu, J.-H., Chen, K.-M., and Yu, Y.-C., J. Phys. Chem. A, 2007, vol. 111, no. 38, p. 9379.

    Article  CAS  PubMed  Google Scholar 

  102. Botsoa, J., Sauvage, T., Adam, M.P., Desgardin, P., Leoni, E., Courtois, B., Treussart, F., and Barthe, M.F., Phys. Rev. B 2011, vol. 84, no. 12, p. 125209.

  103. Mita, Y., Phys. Rev. B, 1996, vol. 53, no. 17, p. 11360.

    Article  CAS  Google Scholar 

  104. Mita, Y., Kanehara, H., and Nisida, Y., Diamond Relat. Mater., 1997, vol. 6, no. 11, p. 1722.

    Article  CAS  Google Scholar 

  105. Mita, Y., Nisida, Y., and Okada, M., AIP Ad., 2018, vol. 8, no. 2, p. 025106.

  106. Davies, G.I., Properties and Growth of Diamond, London: Inst. Electr. Eng., 1994.

    Google Scholar 

  107. Davies, G., Lawson, S.C., Collins, A.T., Mainwood, A., and Sharp, S.J., Phys. Rev. B, 1992, vol. 46, no. 20, p. 13157.

    Article  CAS  Google Scholar 

  108. Mainwood, A., Phys. Rev. B, 1994, vol. 49, no. 12, p. 7934.

    Article  CAS  Google Scholar 

  109. Alekseev, A.G., Amosov, V.N., Krasil’nikov, A.V., Tugarinov, S.N., Frunze, V.V., and Tsutskikh, A.Y., Tech. Phys. Lett., 2000, vol. 26, no. 6, p. 496.

    Article  CAS  Google Scholar 

  110. Koga, K.T., Walter, M.J., Nakamura, E., and Kobayashi, K., Phys. Rev. B, 2005, vol. 72, no. 2, p. 024108.

  111. Dobrinets, I.A., Vins, V.G., Zaitsev, A.M., HPHT-Induced transformations, in HPHT-Treated Diamonds: Diamonds Forever, Heidelberg: Springer, 2013, p. 39.

    Book  Google Scholar 

  112. Torelli, M.D., Nunn, N.A., Jones, Z.R., Vedelaar, T., Padamati, S.K., Schirhagl, R., Hamers, R.J., Shames, A.I., Danilov, E.O., Zaitsev, A., and Shenderova, O.A., Front. Phys., 2020, vol. 8, no. 205. https://doi.org/10.3389/fphy.2020.00205

  113. Shames, A.I., Osipov, V.Y., Bogdanov, K.V., Baranov, A.V., Zhukovskaya, M.V., Dalis, A., Vagarali, S.S., and Rampersaud, A., J. Phys. Chem. C, 2017, vol. 121, no. 9, p. 5232.

    Article  CAS  Google Scholar 

  114. Wang, C., Kurtsiefer, C., Weinfurter, H., and Burchard, B., J. Phys. B, 2005, vol. 39, no. 1, p. 37.

    Article  CAS  Google Scholar 

  115. Becker, J.N., Neu, E., in Semiconductors and Semimetals, Nebel, C.E., Aharonovich, I., Mizuochi, N., and Hatano, M., Eds., New York: Elsevier, 2020, vol. 103, p. 201.

    Google Scholar 

  116. Nguyen, C.T., Evans, R.E., Sipahigil, A., Bhaskar, M.K., Sukachev, D.D., Agafonov, V.N., Davydov, V.A., Kulikova, L.F., Jelezko, F., and Lukin, M.D., Appl. Phys. Lett., 2018, vol. 112, no. 20, p. 203102.

  117. Ekimov, E.A., Lyapin, S.G., Boldyrev, K.N., Kondrin, M.V., Khmelnitskiy, R., Gavva, V.A., Kotereva, T.V., and Popova, M.N., JETP Lett., 2015, vol. 102, no. 11, p. 701.

    Article  CAS  Google Scholar 

  118. Nadolinny, V.A., Komarovskikh, A.Y., Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Rakhmanova, M.I., Yuryeva, O.P., and Veber, S.L., J. Struct. Chem., 2016, vol. 57, no. 5, p. 1041.

    Article  CAS  Google Scholar 

  119. Fan, J.-W., Cojocaru, I., Becker, J., Fedotov, I.V., Alkahtani, M.H.A., Alajlan, A., Blakley, S., Rezaee, M., Lyamkina, A., Palyanov, Y.N., Borzdov, Y.M., Yang, Y.-P., Zheltikov, A., Hemmer, P., and Akimov, A.V., ACS Photonics, 2018, vol. 5, no. 3, p. 765.

    Article  CAS  Google Scholar 

  120. Blakley, S., Liu, X., Fedotov, I., Cojocaru, I., Vincent, C., Alkahtani, M., Becker, J., Kieschnick, M., Lühman, T., Meijer, J., Hemmer, P., Akimov, A., Scully, M., and Zheltikov, A., ACS Photonics, 2019, vol. 6, no. 7, p. 1690.

    Article  CAS  Google Scholar 

  121. Miller, C., Puust, L., Ekimov, E., Vlasov, I., Vanetsev, A., Vinogradova, E., Orlovskii, Y., Treshchalov, A., and Sildos, I., Phys. Status Solidi A, 2020, vol. 218, no. 5, p. 2000217.

  122. Iwasaki, T., Miyamoto, Y., Taniguchi, T., Siyushev, P., Metsch, M.H., Jelezko, F., and Hatano, M., Phys. Rev. Lett., 2017, vol. 119, no. 25, p. 253601.

  123. Alkahtani, M., Cojocaru, I., Liu, X., Herzig, T., Meijer, J., Küpper, J., Lühmann, T., Akimov, A.V., and Hemmer, P.R., Appl. Phys. Lett., 2018, vol. 112, no. 24, p. 241902.

  124. Ekimov, E.A., Lyapin, S.G., and Kondrin, M.V., Diamond Relat. Mater., 2018, vol. 87, p. 223.

    Article  CAS  Google Scholar 

  125. Thiering, G. and Gali, A., Phys. Rev. X, 2018, vol. 8, no. 2, p. 021063.

  126. Bradac, C., Gao, W., Forneris, J., Trusheim, M.E., Aharonovich, I., Nat. Commun., 2019, vol. 10, no. 1, p. 5625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127.  Zhang, T., Pramanik, G., Zhang, K., Gulka, M., Wang, L., Jing, J., Xu, F., Li, Z., Wei, Q., Cigler, P., and Chu, Z., ACS Sens., 2021, vol. 6, no. 6, p. 2077.

    Article  PubMed  CAS  Google Scholar 

  128.  Perona Martínez, F., Nusantara, A.C., Chipaux, M., Padamati, S.K., and Schirhagl, R., ACS Sens., 2020, vol. 5, no. 12, p. 3862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129.  Nie, L., Nusantara, A.C., Damle, V.G., Sharmin, R., Evans, E.P.P., Hemelaar, S.R., van der Laan, K.J., Li, R., Perona Martinez, F.P., Vedelaar, T., Chipaux, M., and Schirhagl, R., Sci. Adv., 2021, vol. 7, no. 21. https://doi.org/10.1126/sciadv.abf0573

  130.  Nishimura, Y., Oshimi, K., Umehara, Y., Kumon, Y., Miyaji, K., Yukawa, H., Shikano, Y., Matsubara, T., Fujiwara, M., and Baba, Y., Sci. Rep., 2021, vol. 11, no. 1, p. 4248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131.  Pedroza-Montero, F., Santacruz-Gómez, K., Acosta-Elías, M., Silva-Campa, E., Meza-Figueroa, D., Soto-Puebla, D., Castaneda, B., Urrutia-Bañuelos, E., Álvarez-Bajo, O., Navarro-and Espinoza, S., Appl. Sci., 2021, vol. 11, no. 9, p. 4065. https://doi.org/10.3390/app11094065

    Article  CAS  Google Scholar 

  132.  Fujiwara, M., Sun, S., Dohms, A., Nishimura, Y., Suto, K., Takezawa, Y., Oshimi, K., Zhao, L., Sadzak, N., and Umehara, Y., Sci. Adv., 2020, vol. 6, no. 37.

  133.  Holzgrafe, J., Gu, Q., Beitner, J., Kara, D.M., Knowles, H.S., and Atatüre, M., Phys. Rev. Appl., 2020, vol. 13, no. 4, 044004.

  134.  Bucher, D.B., Glenn, D.R., Park, H., Lukin, M.D., and Walsworth, R.L., Phys. Rev. X, 2020, vol. 10, no. 2, p. 021053.

  135.  Sigaeva, A., Morita, A., Hemelaar, S.R., and Schirhagl, R., Nanoscale, 2019, vol. 11, no. 37, p. 17357.

    Article  PubMed  Google Scholar 

  136.  Jarre, G., Heyer, S., Memmel, E., Meinhardt, T., and Krueger, A., Beilstein J. Org. Chem., 2014, vol. 10, p. 2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Shenderova, O., Nunn, N., Oeckinghaus, T., Torelli, M., McGuire, G., Smith, K., Danilov, E., Reuter, R., Wrachtrup, J., Shames, A., Filonova, D., and Kinev, A., SPIE OPTO, San Francisco, 2017, p 16.

    Google Scholar 

  138.  Zhang, X.-Q., Chen, M., Lam, R., Xu, X., Osawa, E., and Ho, D., ACS Nano, 2009, vol. 3, no. 9, p. 2609.

    Article  PubMed  CAS  Google Scholar 

  139.  Creusat, G., Rinaldi, A.-S., Weiss, E., Elbaghdadi, R., Remy, J.-S., Mulherkar, R., and Zuber, G., Bioconjugate Chem., 2010, vol. 21, no. 5, p. 994.

    Article  CAS  Google Scholar 

  140.  Vavra, J., Rehor, I., Rendler, T., Jani, M., Bednar, J., Baksh, M.M., Zappe, A., Wrachtrup, J., and Cigler, P., Adv. Funct. Mater., 2018, vol. 28, no. 45, 1803406.

  141.  Chu, Z., Miu, K., Lung, P., Zhang, S., Zhao, S., Chang, H.-C., Lin, G., and Li, Q., Sci. Rep., 2015, vol. 5, p. 11661.

    Article  PubMed  PubMed Central  Google Scholar 

  142.  Chan, M.S., Liu, L.S., Leung, H.M., and Lo, P.K., ACS App. Mater. Interfaces, 2017, vol. 9, no. 13, p. 11780.

    Article  CAS  Google Scholar 

  143.  Cheng, Y., Liu, D.-Z., Zhang, C.-X., Cui, H., Liu, M., Mei, Q.-B., Lu, Z.-F., and Zhou, S.-Y., Nanomed.: Nanotechnol., Biol. Med., 2019, vol. 16, p. 236.

    Article  CAS  Google Scholar 

  144.  Mkandawire, M., Pohl, A., Gubarevich, T., Lapina, V., Appelhans, D., Rödel, G., Pompe, W., Schreiber, J., and Opitz, J., J. Biophotonics, 2009, vol. 2, no. 10, p. 596.

    Article  PubMed  CAS  Google Scholar 

  145.  Morita, A., Hamoh, T., Sigaeva, A., Norouzi, N., Nagl, A., van der Laan, K.J., Evans, E.P., and Schirhagl, R., Nanomaterials, 2020, vol. 10, no. 10, p. 1962.

    Article  PubMed Central  CAS  Google Scholar 

  146.  Nunn, N., Prabhakar, N., Reineck, P., Magidson, V., Kamiya, E., Heinz, W.F., Torelli, M.D., Rosenholm, J., Zaitsev, A., and Shenderova, O., Nanoscale, 2019, vol. 11, p. 11584.

    Article  PubMed  PubMed Central  Google Scholar 

  147.  Comley, J., Drug Discovery World, 2011, p. 58.

    Google Scholar 

  148.  Yoon, S., Kim, M., Jang, M., Choi, Y., Choi, W., Kang, S., and Choi, W., Nat. Rev. Phys., 2020, vol. 2, no. 3, p. 141.

    Article  Google Scholar 

  149.  Miller, M.A. and Weissleder, R., Nat. Rev. Cancer, 2017, vol. 17, no. 7, p. 399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150.  Tuszynski, M.H., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E.S., and Havton, L.A., Exp. Neurol., 2014, vol. 261, p. 494.

    Article  PubMed  CAS  Google Scholar 

  151.  Hidalgo, M., Amant, F., Biankin, A.V., Budinská, E., Byrne, A.T., Caldas, C., Clarke, R.B., de Jong, S., Jonkers, J., and Mælandsmo, G.M., Cancer Discovery, 2014, vol. 4, no. 9, p. 998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152.  Fu, Q., Zhu, R., Song, J., Yang, H., and Chen, X., Adv. Mater., 2019, vol. 31, no. 6, p. e1805875.

  153.  Ruan, H., Liu, Y., Xu, J., Huang, Y., and Yang, C., Nat. Photonics, 2020, vol. 14, no. 8, p. 511.

    Article  CAS  Google Scholar 

  154.  Sarracanie, M., LaPierre, C.D., Salameh, N., Waddington, D.E., Witzel, T., and Rosen, M.S., Sci. Rep., 2015, vol. 5, p. 15177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded in whole or in part by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) under SBIR grant no. 1R43GM144026-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Nunn or O. Shenderova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunn, N., Torelli, M.D., Ajoy, A. et al. Beauty beyond the Eye: Color Centers in Diamond Particles for Imaging and Quantum Sensing Applications. rev. and adv. in chem. 12, 1–21 (2022). https://doi.org/10.1134/S2634827622010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827622010044

Keywords:

Navigation