Skip to main content
Log in

Synthesis of biocompatible surfaces by nanotechnology methods

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The modification of the surface of low-density polyethylene (LDPE) and polyurethane (PU) by means of the pulsed ion-plasma deposition of nanostructural carbon coatings at 20–60°C has been studied. The effect of this low-temperature treatment on the biocompatibility of the LDPE and PU has been assessed. Optimum technological parameters for the formation of mosaic carbon nanostructures with a thickness of 0.3–15 nm and a cluster lateral size of 10–500 nm are determined. These structures give the polymer surface increased hemocompatible properties. The surface of samples was studied by methods of scanning electron microscopy, scanning probe microscopy, and Raman spectroscopy. The effect of the UV light of a krypton lamp (λ = 123.6 nm) and white synchrotron radiation on the surface of poly(methyl methacrylate) (PMMA) preliminarily treated in an oxygen-containing RF discharge plasma has been investigated by varying the duration of exposure (from several minutes to several dozen minutes) and the residual gas pressure (2 and 100 Pa). This processing ensures the smoothing of the surface relief on micro- and nanoscale levels, which can improve the biocompatibility of the modified PMMA film surface. The principles of a two-stage technology for rendering the titanium (implant) surface biocompatible are developed. This technology consists of the chemical pretreatment of the surface for creating a microrelief (2–3 μm roughness), followed by the deposition of a titanium oxide film with controlled composition (TiO2) and thickness (10–60 nm). The influence of the mechanisms and technological parameters of the oxide film deposition on its composition, structure, uniformity (conformal coating of involved shapes), and biocompatibility of the modified surface have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Poole,Jr. and F. J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003; Tekhnosfera, Moscow, 2006).

    Google Scholar 

  2. A. P. Alekhin, A. G. Kirilenko, R. V. Lapshin, R. I. Romanov, and A. A. Sigarev, “Nanostructured Carbon Coatings on Polyethylene Films,” Zh. Prikl. Khim. (St. Petersburg) 76(9), 1536–1540 (2003) [Russ. J. Appl. Chem. 76 (9), 1497–1501 (2003)].

    Google Scholar 

  3. A. P. Alekhin, A. G. Kirilenko, and R. V. Lapshin, “Surface Morphology of Carbon Thin Films Deposited from Plasma onto Low-Density Polyethylene,” Poverkhnost, No. 2, 3–9 (2004).

  4. P. K. Chu, B. Y. Tang, L. P. Wang, and N. Huang, “Third-Generation Plasma Immersion Ion Implanter for Biomedical Materials and Research,” Rev. Sci. Instrum. 72(3), 1660 (2001).

    Article  CAS  ADS  Google Scholar 

  5. A. A. Barybin and V. G. Sidorov, Physical and Technological Foundations of Electronics: A Textbook for Higher Educational Institutions (Lan’, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  6. A. P. Alekhin et al., “The Method for Modifying the Surface of a Polymer,” RF Patent No. 2 325 192 (May 27, 2008).

  7. V. I. Sevast’yanov, Biocompatibility (VNIIGS Testing Centre, Moscow, 1999) [in Russian].

    Google Scholar 

  8. V. I. Sevast’yanov, I. A. Titushkin, S. L. Vasin, I. B. Rozanova, and A. P. Alekhin, “Influence of the Structural and Energy-Related Properties of Carbon Coatings on the Adhesion of Human Thrombocyte,” Perspekt. Mater., No. 5, 24 (1999).

  9. A. P. Alekhin, A. I. Vrublevskii, A. M. Markeev, R. I. Romanov, and V. N. Nevolin, “On the Structure and Properties of Amorphous Carbon-Containing Films Produced by Magnetically Active Microwave-Plasma Deposition,” Poverkhnost, No. 10, 47 (1996).

  10. M. Tamba, K. Kawamura, K. Okazaki, and H. Amemiya, “Formation of Diamond-Like Carbon by a Pure Carbon Arc under High Vacuum,” Jpn. J. Appl. Phys. 40, 1064–1066 (2001).

    Article  CAS  ADS  Google Scholar 

  11. E. A. Nemets, O. S. Polukhina, V. A. Egorova, A. V. Kuznetsov, V. N. Vasilets, and V. I. Sevast’yanov, “Modification of Polymeric Biomaterials under Vacuum Ultraviolet Radiation,” Vestn. Transplantol. Iskusstvennykh Organov, No. 3, 116 (2002).

  12. V. N. Vasilets, A. V. Kusnetsov, and V. I. Sevastianov, “Vacuum Ultraviolet Treatment of Polyethylene to Change Surface Properties and Characteristics of Protein Adsorption,” J. Biomed. Mater. Res., Part A 69A, 428–435 (2004).

    Article  CAS  Google Scholar 

  13. A. N. Ponomarev, V. N. Vasilets, and R. V. Tal’roze, “Plasma-Chemical Modification of Polymers,” Khim. Fiz., No. 21 (4) (2002).

  14. R. V. Lapshin, A. P. Alekhin, A. G. Kirilenko, S. L. Odintsov, and V. A. Krotkov, “Vacuum Ultraviolet Smoothing of Nanometer-Scale Asperities of Poly(methyl methacrylate) Surface,” Poverkhnost, No. 1, 35 (2010) [J. Surf. Invest. 4 (1), 1 (2010)].

  15. N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured Super-Hydrophobic Transparent Poly(methyl methacrylate) Surfaces Using High-Density Plasma Processing,” Nanotechnology 18(12), article 125 304 (7 pages) (2007).

    Google Scholar 

  16. S. Yoshida, T. Ono, and M. Esashi, “Conductive Polymer Patterned Media Fabricated by Diblock Copolymer Lithography for Scanning Multiprobe Data Storage,” Nanotechnology 19(47), article 475 302, (9 pages) (2008).

  17. J. Chai, F. Lu, B. Li, and D. Y. Kwok, “Wettability Interpretation of Oxygen Plasma Modified Poly(methyl methacrylate),” Langmuir 20(25), 10 919–10 927 (2004).

    Article  CAS  Google Scholar 

  18. H. Lim, Y. Lee, S. Han, J. Cho, and K.-J. Kim, “Surface Treatment and Characterization of PMMA, PHEMA, and PHPMA,” J. Vac. Sci. Technol., A 19(4), 1490–1496 (2001).

    Article  CAS  ADS  Google Scholar 

  19. N. Sulca, A. Lungu, Sorina Alexandra Garea, and H. Iovu, “Monitoring the Synthesis of New Polymer Nanocomposites Based on Different Polyhedral Oligomeric Silsesquioxanes Using Raman Spectroscopy,” J. Raman Spectrosc. 40(11), 1641–1644 (2009).

    Article  Google Scholar 

  20. A. P. Alekhin, A. M. Markeev, D. V. Tetyukhin, E. N. Kozlov, and M. A. Stepanova, “Influence of Physicochemical Properties of the Surface of Titanium Implants and the Methods Used for Their Modification on the Osteointegration Characteristics,” Klin. Stomatol., No. 3, 3 (2009).

  21. M. Lampin, C. Warocquier, C. Legris, M. Degrange, and M. F. Sigot-Luizard, “Correlation between Substratum Roughness and Wettability, Cell Adhesion, and Cell Migration,” J. Biomed. Mater. Res. 36, 99 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, “High-Surface Energy Enhances Cell Response to Titanium Substrate Microstructure,” J. Biomed. Mater. Res., Part A 74A, 49 (2005).

    Article  CAS  Google Scholar 

  23. J. Heinrichs, T. Jarmar, M. Rooth, and H. Enqvist, “In Vitro Bioactivity of Atomic Layer Deposited Titanium Dioxide on Titanium and Silicon Substrates,” Key Eng. Mater. 361-363, 689 (2008).

    Article  CAS  Google Scholar 

  24. V. B. Aleskovskii, Stoichiometry and Synthesis of Solid Compounds (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  25. A. A. Malygin, “Molecular Layering Nanotechnology,” Ross. Nanotekhnol. 2, 87 (2007).

    ADS  Google Scholar 

  26. G. V. Lisichkin, Chemistry of Grafted Surface Compounds (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  27. R. I. Puurunen, “Surface Chemistry of Atomic Layer Deposition: A Case of Study for the Trimethylaluminum/Water Process,” J. Appl. Phys. 97, 121 (2005).

    Article  Google Scholar 

  28. Hae-Won Kim, Hyoun-Ee Kim, and Jonathan C. Knowles, “Fluor-Hydroxyapatite Sol-Gel Coating on Titanium Substrate for Hard Tissue Implants,” Biomaterials 25(17), 3351–3358 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Alekhin.

Additional information

Original Russian Text © A.P. Alekhin, G.M. Boleiko, S.A. Gudkova, A.M. Markeev, A.A. Sigarev, V.F. Toknova, A.G. Kirilenko, R.V. Lapshin, E.N. Kozlov, D.V. Tetyukhin, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol. 5, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekhin, A.P., Boleiko, G.M., Gudkova, S.A. et al. Synthesis of biocompatible surfaces by nanotechnology methods. Nanotechnol Russia 5, 696–708 (2010). https://doi.org/10.1134/S1995078010090144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010090144

Keywords

Navigation