Skip to main content
Log in

Infrared spectroscopy of bonded silicon wafers

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Infrared spectra of multiple frustrated total internal reflection and transmission for silicon wafers obtained by direct bonding in a wide temperature range (200–1100°C) are studied. Properties of the silicon oxide layer buried at the interface are investigated in relation to the annealing temperature. It is shown that the thickness of the SiO2 layer increases from 4.5 to 6.0 nm as the annealing temperature is increased. An analysis of the optical-phonon frequencies showed that stresses in the SiO2 relax as the annealing temperature is increased. A variation in the character of chemical bonds at the interface between silicon wafers bonded at a relatively low temperature (20–400°C) is studied in relation to the chemical treatment of the wafers’ surface prior to bonding. Models of the process of low-temperature bonding after various treatments for chemical activation of the surface are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Electrochemical Society, New York, 1999).

    Google Scholar 

  2. Q.-Y. Tong, W. J. Kim, T.-H. Lee, and U. Gösele, Electrochem. Solid-State Lett. 1, 52 (1998).

    Article  Google Scholar 

  3. K. Hiller, M. Wiemer, C. Kaufmann, et al., in Proceedings of 10th International Conference on Solid-State Sensors and Actuators, Transducers’99 (Sendai, 1999), p. 1448.

  4. D. Feijoo, Y. J. Chabal, and S. B. Christman, Appl. Phys. Lett. 65, 2548 (1994).

    Article  ADS  Google Scholar 

  5. R. Stengl, T. Tan, and U. Goesele, Jpn. J. Appl. Phys. 28, 1735 (1989).

    Article  Google Scholar 

  6. M. K. Weldon, Y. J. Chabal, D. R. Hamann, et al., J. Vac. Sci. Technol. B 14, 3095 (1996).

    Article  Google Scholar 

  7. M. K. Weldon, V. E. Marsico, Y. J. Chabal, et al., Surf. Sci. 368, 163 (1996).

    Article  Google Scholar 

  8. Y. J. Chabal, D. Feijoo, S. B. Christman, and C. A. Goodwin, Proc. Electrochem. Soc. 7, 305 (1995).

    Google Scholar 

  9. K.-Y. Ahn, R. Stegl, T. Y. Tan, et al., Appl. Phys. A 50, 85 (1990).

    Article  ADS  Google Scholar 

  10. L. Ling and F. Shimura, J. Appl. Phys. 71, 1237 (1992).

    Article  ADS  Google Scholar 

  11. C. Himcinschi, A. Milekhin, M. Friedrich, et al., J. Appl. Phys. 89, 1992 (2001).

    Article  ADS  Google Scholar 

  12. C. Himcinschi, A. Milekhin, M. Friedrich, et al., Appl. Surf. Sci. 175–176, 715 (2001).

    Article  Google Scholar 

  13. C. Maleville, O. Rayssac, H. Moriceau, et al., Proc.-Electrochem. Soc. 36, 46 (1997).

    Google Scholar 

  14. D. W. Berreman, Phys. Rev. 130, 2193 (1963).

    Article  ADS  Google Scholar 

  15. A. Milekhin, M. Friedrich, K. Hiller, et al., J. Vac. Sci. Technol. B 17, 1733 (1999).

    Article  ADS  Google Scholar 

  16. A. Milekhin, M. Friedrich, K. Hiller, et al., J. Vac. Sci. Technol. B 18, 1392 (2000).

    Article  Google Scholar 

  17. Y. J. Chabal, Surf. Sci. Rep. 8(5–7), 211 (1988).

    Article  Google Scholar 

  18. W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

    Google Scholar 

  19. C. G. Armistead, A. J. Tyler, F. H. Hambleton, and J. A. Hockey, J. Phys. Chem. 73, 3947 (1969).

    Article  Google Scholar 

  20. T. A. Michlske and B. C. Bunker, J. Appl. Phys. 56, 2686 (1984).

    Article  ADS  Google Scholar 

  21. W. P. Maszara, G. Goetz, A. Gaviglia, and J. B. McKitterick, J. Appl. Phys. 64, 4943 (1988).

    Article  ADS  Google Scholar 

  22. K. T. Queeney, M. K. Weldon, J. P. Chang, et al., J. Appl. Phys. 87, 1322 (2000).

    Article  ADS  Google Scholar 

  23. P. N. Sen and M. F. Thorpe, Phys. Rev. B 15, 4030 (1977).

    Article  ADS  Google Scholar 

  24. F. L. Galeener, Phys. Rev. B 19, 4292 (1979).

    Article  ADS  Google Scholar 

  25. C. Martinet, R. A. B. Devine, and M. Brunel, J. Appl. Phys. 81, 6996 (1997).

    Article  ADS  Google Scholar 

  26. K. Ishikawa, U. Uchiyama, H. Ogawa, and S. Fujimura, Appl. Surf. Sci. 117–118, 212 (1997).

    Article  Google Scholar 

  27. A. B. Gurevich, M. K. Weldon, Y. J. Chabal, et al., Appl. Phys. Lett. 74, 1257 (1999).

    Article  ADS  Google Scholar 

  28. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).

    Google Scholar 

  29. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1985).

    Google Scholar 

  30. Y. J. Chabal, Surf. Sci. 168, 594 (1986).

    Article  Google Scholar 

  31. P. Dumas, Y. J. Chabal, and P. Jakob, Surf. Sci. 269–270, 867 (1992).

    Article  Google Scholar 

  32. H. Ogawa and T. Hattori, Appl. Phys. Lett. 61, 577 (1992).

    Article  ADS  Google Scholar 

  33. Z. H. Zhou, E. S. Aydil, R. A. Gottscho, et al., J. Electrochem. Soc. 140, 1316 (1993).

    Google Scholar 

  34. M. Niwano, J. Kageyama, K. Kurita, et al., J. Appl. Phys. 76, 2157 (1994).

    Article  ADS  Google Scholar 

  35. R. E. Pritchard, M. J. Ashwin, J. H. Tucker, et al., Phys. Rev. B 56, 13 118 (1997).

  36. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, 1991).

    Google Scholar 

  37. J. A. Schaefer, D. Frankel, F. Stucki, et al., Surf. Sci. 139, L209 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Milekhin, C. Himcinschi, M. Friedrich, K. Hiller, M. Wiemer, T. Gessner, S. Schulze, D.R.T. Zahn, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 11, pp. 1338–1348.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milekhin, A.G., Himcinschi, C., Friedrich, M. et al. Infrared spectroscopy of bonded silicon wafers. Semiconductors 40, 1304–1313 (2006). https://doi.org/10.1134/S1063782606110108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606110108

PACS numbers

Navigation