Skip to main content
Log in

Constraints on dark matter in the solar system

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have searched for and estimated the possible gravitational influence of dark matter in the Solar system based on the EPM2011 planetary ephemerides using about 677 thousand positional observations of planets and spacecraft. Most of the observations belong to present-day ranging measurements. Our estimates of the dark matter density and mass at various distances from the Sun are generally overridden by their errors (σ). This suggests that the density of dark matter ρ dm, if present, is very low and is much less than the currently achieved error of these parameters. We have found that ρ dm is less than 1.1 × 10−20 g cm−3 at the orbital distance of Saturn, ρ dm < 1.4 × 10−20 g cm−3 at the orbital distance of Mars, and ρ dm < 1.4 × 10−19 g cm−3 at the orbital distance of the Earth. We also have considered the case of a possible concentration of dark matter to the Solar system center. The dark matter mass in the sphere within Saturn’s orbit should be less than 1.7 × 10−10 M even if its possible concentration is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Anderson, E. L. Lau, A. H. Taylor, et al., Astrophys. J. 342, 539 (1989).

    Article  ADS  Google Scholar 

  2. J. D. Anderson, E. L. Lau, T. P. Krisher, et al., Astrophys. J. 448, 885 (1995).

    Article  ADS  Google Scholar 

  3. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).

    Article  ADS  Google Scholar 

  4. A. Fienga, J. Laskar, P. Kuchynka, et al., Cel. Mech. Dyn. Astr. 111, 363 (2011).

    Article  ADS  Google Scholar 

  5. C. Flynn, J. Sommer-Larsen, and P. R. Christensen, Mon. Not. R. Astron. Soc. 281, 1027 (1996).

    ADS  Google Scholar 

  6. J.-M. Frère, F.-S. Ling, and G. Vertongen, Phys. Rev. D 77, 083005 (2008).

    Article  ADS  Google Scholar 

  7. A. M. Fridman and A. V. Khoperskov, Physics of Galactic Disks (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  8. M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).

    Article  ADS  Google Scholar 

  9. O. Gron and H. H. Soleng, Astrophys. J. 456, 445 (1996).

    Article  ADS  Google Scholar 

  10. A. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, Heidelberg, New York, 1972; Mir, Moscow, 1976).

    Book  Google Scholar 

  11. L. Iorio, J. Cosmol. Astropart. Phys. 05, 002 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Iorio, J. Cosmol. Astropart. Phys. 05, 018 (2010).

    Article  ADS  Google Scholar 

  13. D. L. Jones, E. Fomalont, V. Dhawan, et al., Astron. J. 141, 29 (2011).

    Article  ADS  Google Scholar 

  14. I. D. Karachentsev, Astrofizika 2, 81 (1966).

    Google Scholar 

  15. I. D. Karachentsev, Phys. Usp. 44, 818 (2001).

    Article  ADS  Google Scholar 

  16. N. S. Kardashev, A. V. Tutukov, and A. V. Fedorova, Astron. Zh. 82, 157 (2005).

    Google Scholar 

  17. R. Keisler, C. L. Reichardt, K. A. Aird, et al., Astrophys. J. 743, 28 (2011).

    Article  ADS  Google Scholar 

  18. I. B. Khriplovich, Int. J. Mod. Phys. D 16, 1475 (2007).

    Article  ADS  MATH  Google Scholar 

  19. I. B. Khriplovich and E. V. Pitjeva, Int. J. Mod. Phys. D 15, 615 (2006).

    Article  ADS  MATH  Google Scholar 

  20. E. Komatsu, K. M. Smith, J. Dunkleg, et al., Astrophys. J. Suppl. Ser. 192, 18 (2011).

    Article  ADS  Google Scholar 

  21. A. S. Konopliv, S. W. Asmar, W. M. Folkner, et al., Icarus 211, 401 (2011).

    Article  ADS  Google Scholar 

  22. M. Kowalski, D. Rubin, G. Aldering, et al., Astrophys. J. 686, 749 (2008).

    Article  ADS  Google Scholar 

  23. G. A. Krasinsky and M. V. Vasilyev, Dynamics and Astrometry of Natural and Artificial Celestial Bodies, Proceedings of the IAU Coll. No. 165, Ed. by I. M. Wytrzyszczak, J. H. Lieske, and R. A. Feldman (Kluwer Acad. Publ., Dordrecht, 1997), p. 239.

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Pergamon Press, New York, 1988; Fizmatlit, Moscow, 2004).

    Google Scholar 

  25. J. Lundberg and J. Edsjö, Phys. Rev. D 69, 123505 (2004).

    Article  ADS  Google Scholar 

  26. B. Luzum, N. Capitaine, A. Fienga, et al., Celest. Mech. Dyn. Astr. 110, 293 (2011).

    Article  ADS  Google Scholar 

  27. K. L. Nordtwedt, Astrophys. J. 437, 529 (1994).

    Article  ADS  Google Scholar 

  28. K. L. Nordtwedt, J. Mueller, and M. Soffel, Astron. Astrophys. 293L, L73 (1995).

    ADS  Google Scholar 

  29. E. N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963; Mir, Moscow, 1965).

    MATH  Google Scholar 

  30. E. N. Parker, Dynamical Theory of the Solar Wind, Space Sci. Rev. 4, 666 (1965).

    Article  ADS  Google Scholar 

  31. A. Peter, Phys. Rev. D 79, 103531 (2009).

    Article  ADS  Google Scholar 

  32. A. Peter, arXiv: astro-ph/1201.3942 (2012).

  33. E. V. Pitjeva, Solar System Res. 39, 176 (2005).

    Article  ADS  Google Scholar 

  34. E. V. Pitjeva, in A Giant Step: From Milli- to Micro-Arcsecond Astrometry, Proceedings of the IAU Symposium No. 248, Ed. by W. J. Jin, I. Platais, and M. A. C. Perryman (Cambridge Univ. Press, 2008), p. 20.

  35. E. V. Pitjeva, in Relativity in Fundamental Aastronomy, Proceedings of the IAU Symposium No. 261, Ed. by S. Klioner, P. K. Seidelmann, and M. Soffel (Cambridge Univ. Press, 2010), p. 170.

  36. E. V. Pitjeva and E. M. Standish, Celest. Mech. Dyn. Astron. 103, 365 (2009).

    Article  ADS  MATH  Google Scholar 

  37. E. V. Pitjeva and N. P. Pitjev, Solar System Res. 46, 78 (2012).

    Article  ADS  Google Scholar 

  38. M. Sereno and Ph. Jetzer, Mon. Not. R. Astron. Soc. 371, 626 (2006).

    Article  ADS  Google Scholar 

  39. F. Zwicky, Helv. Phys. Acta 6, 110 (1933).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Pitjev.

Additional information

Original Russian Text © N. P. Pitjev, E. V. Pitjeva, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 3, pp. 163–172.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitjev, N.P., Pitjeva, E.V. Constraints on dark matter in the solar system. Astron. Lett. 39, 141–149 (2013). https://doi.org/10.1134/S1063773713020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713020060

Keywords

Navigation