Skip to main content
Log in

Stratification of optical emission from NGC 6888 as a trace of the interaction between Wolf-Rayet stellar wind and the shell of a red supergiant

  • Published:
Astronomy Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We suggest a model that explains the stratification peculiarities of the [O III] and Hα line emission from some of the ring nebulae around Wolf-Rayet stars. These peculiarities lie in the fact that the [O III] line emission regions are farther from the central star than the Hα regions, with the distance between them reaching several tenths of a parsec. We show that the radiative shock produced by a Wolf-Rayet stellar wind and propagating with a velocity of ∼100 km s−1 cannot explain such large distances between these regions due to the low velocity of the gas outflow from the shock front. The suggested model takes into account the fact that the shock produced by a Wolf-Rayet stellar wind propagates in a two-phase medium: a rarefied medium and dense compact clouds. The gas downstream of a fast shock traveling in a rarefied gas compresses the clouds. Slow radiative shocks are generated in the clouds; these shocks heat the latter to temperatures at which ions of doubly ionized oxygen are formed. The clouds cool down, radiating in the lines of this ion, to temperatures at which Balmer line emission begins. The distance between the [O III] and Hα line emission regions is determined by the cooling time of the clouds downstream of the slow shock and by the velocity of the fast shock. Using the ring nebula NGC 6888 as an example, we show that the gas downstream of the fast shock must be at the phase of adiabatic expansion rather than deceleration with radiative cooling, as assumed previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Bychkov, T. G. Sitnik, and O. V. Fedorova, Astron. Zh. 63, 939 (1986) [Sov. Astron. 30, 555 (1986)].

    ADS  Google Scholar 

  2. D. P. Cox, Astrophys. J. 178, 143 (1972).

    Article  ADS  Google Scholar 

  3. R. J. Dufour, Rev. Mex. Astron. Astrofis. 18, 67 (1989).

    MathSciNet  ADS  Google Scholar 

  4. C. Esteban, J. M. Vilchez, L. J. Smith, and R. E. S. Clegg, Astron. Astrophys. 259, 629 (1992).

    ADS  Google Scholar 

  5. G. Garcia-Segura, N. Langer, and M.-M. Mac Low, Astron. Astrophys. 316, 133 (1996a).

    ADS  Google Scholar 

  6. G. Garcia-Segura, M.-M. Mac Low, and N. Langer, Astron. Astrophys. 305, 229 (1996b).

    ADS  Google Scholar 

  7. Y. P. Georgelin and G. Monnet, Astrophys. J. 5, L239 (1970).

    ADS  Google Scholar 

  8. R. A. Gruendl, Y.-H. Chu, B. C. Dunne, and S. D. Points, Astron. J. 120, 2670 (2000).

    Article  ADS  Google Scholar 

  9. S. A. Kaplan and S. B. Pikel’ner, Interstellar Medium (Fizmatgiz, Moscow, 1979) [in Russian].

    Google Scholar 

  10. K. B. Kwitter, Astrophys. J. 245, 154 (1981).

    Article  ADS  Google Scholar 

  11. T. A. Lozinskaya, Astron. Zh. 47, 122 (1970) [Sov. Astron. 14, 98 (1970)].

    ADS  Google Scholar 

  12. A. P. Marston, Astron. J. 109, 2257 (1995).

    Article  ADS  Google Scholar 

  13. A. P. Marston and J. Meaburn, Mon. Not. R. Astron. Soc. 235, 391 (1988).

    ADS  Google Scholar 

  14. J. Miller and Y.-H. Chu, Astrophys. J., Suppl. Ser. 85, 137 (1993).

    Article  ADS  Google Scholar 

  15. P.M. Mitra, PhD Thesis (Rice Univ., 1990).

  16. B. D. Moore, J. J. Hester, and P. A. Scowen, Astron. J. 119, 2991 (2000).

    Article  ADS  Google Scholar 

  17. R. A. R. Parker, Astrophys. J. 139, 493 (1964).

    Article  ADS  Google Scholar 

  18. R. A. R. Parker, Astrophys. J. 224, 873 (1978).

    Article  ADS  Google Scholar 

  19. S. B. Pikel’ner, Izv. Krym. Astrofiz. Obs. 12, 93 (1954).

    Google Scholar 

  20. R. R. Treffers and Y.-H. Chu, Astrophys. J. 254, 569 (1982).

    Article  ADS  Google Scholar 

  21. H. J. Wendker, L. F. Smith, F. P. Israel, et al., Astron. Astrophys. 42, 173 (1975).

    ADS  Google Scholar 

  22. M. Wrigge, Y.-H. Chu, E.A. Magnier, and Y. Kamata, Lect. Notes Phys. 506, 425 (1998).

    Article  ADS  Google Scholar 

  23. M. Wrigge, Y.-H. Chu, E. A. Magnier, and H. J. Wendker, astro-ph/0507391 (2005).

  24. M. Wrigge and H. J. Wendker, Astron. Astrophys. 391, 287 (2002).

    Article  ADS  Google Scholar 

  25. M. Wrigge, H. J. Wendker, and L. Wistozki, Astron. Astrophys. 286, 219 (1994).

    ADS  Google Scholar 

  26. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1966, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.V. Bychkov, T.G. Sitnik, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 6, pp. 452–459.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bychkov, K.V., Sitnik, T.G. Stratification of optical emission from NGC 6888 as a trace of the interaction between Wolf-Rayet stellar wind and the shell of a red supergiant. Astron. Lett. 32, 406–412 (2006). https://doi.org/10.1134/S1063773706060041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773706060041

PACS numbers

Key words

Navigation