Skip to main content
Log in

Secular Evolution of Rings around Rotating Triaxial Gravitating Bodies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The problem of the secular evolution of a thin ring around a rapidly rotating triaxial celestial body is formulated and solved. The technology for calculating secular perturbations is based on two formulas: the azimuthally averaged force field of the central body and the mutual energy \({{W}_{{{\text{mut}}}}}\) of this body and a Gaussian ring. With \({{W}_{{{\text{mut}}}}}\) instead of the usual perturbing function, a system of differential equations for the osculating elements of the ring is obtained. An equation is obtained that allows one to find the coefficients of the zonal harmonics of the azimuthally averaged potential of an inhomogeneous ellipsoid using a unified scheme. The method is applied to dwarf planet Haumea with refined masses of the rocky core and the ice shell and the coefficients \({{C}_{{20}}}\) and \({{C}_{{40}}}\) of the po-tential’s zonal harmonics. According to new data, the ring around Haumea has a slight obliquity and must precess. It was established that the period of the retrograde nodal precession of the Haumea’s ring (without regard to self-gravity) is \({{T}_{\Omega }} = 12.9 \pm 0.7\) days and the period of the forward of the apside line precession is \({{T}_{\omega }} \approx 8.{\text{08}}\;{\text{days}}\). It is proven that the 3:1 orbital resonance for the particles of the Haumea’s ring is fulfilled only approximately and the averaging time of additional perturbations at a nonsharp resonance turned out to be an order of magnitude smaller than \({{T}_{\Omega }}\). This confirms the adequacy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. D. Bérard, B. Sicardy, M. Assafin, F. Braga-Ribas, et al., in Proceedings of the 47th DPS Meeting, Washington, DC, U. S., Nov. 8–13,2015 (Am. Astron. Soc., 2015), id.104.02.

  2. F. Braga-Ribas, B. Sicardy, J. L. Ortiz, et al., Nature (London, U.K.) 508, 72 (2014).

    Article  ADS  Google Scholar 

  3. B. P. Kondratyev, Astrophys. Space Sci. 361, 169 (2016).

    Article  ADS  Google Scholar 

  4. J. L. Ortiz, P. Santos-Sanz, B. Sicardy, et al., Nature (London, U.K.) 550, 219 (2017).

    Article  ADS  Google Scholar 

  5. M. E. Brown, A. H. Bouchez, D. L. Rabinowitz, et al., Astrophys. J. Lett. 632, L45 (2005).

    Article  ADS  Google Scholar 

  6. D. L. Rabinowitz, K. Barkume, M. E. Brown, et al., Astrophys. J. 639, 1238 (2006).

    Article  ADS  Google Scholar 

  7. P. Lacerda, D. Jewitt, and N. Peixinho, Astron. J. 135, 1749 (2008).

    Article  ADS  Google Scholar 

  8. M. E. Brown, M. A. van Dam, A. H. Bouchez, et al., Astrophys. J. 639, L43 (2006).

    Article  ADS  Google Scholar 

  9. D. Ragozzine and M. E. Brown, Astron. J. 137, 4766 (2009).

    Article  ADS  Google Scholar 

  10. B. P. Kondratyev and V. S. Kornoukhov, Mon. Not. R. Astron. Soc. 478, 3159 (2018).

    Article  ADS  Google Scholar 

  11. B. P. Kondratyev, Solare Syst. Res. 46, 352 (2012).

    Article  ADS  Google Scholar 

  12. V. A. Antonov, I. I. Nikiforov, and K. V. Kholshevnikov, Elements of the Theory of Gravitational Potential and Some Cases of its Explicit Expression (SPbGU, St. Petersburg, 2008) [in Russian].

  13. B. P. Kondratyev and V. S. Kornoukhov, Tech. Phys. 64, 1395 (2019).

    Article  Google Scholar 

  14. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 64, 434 (2020).

    Article  ADS  Google Scholar 

  15. G. N. Duboshin, Celestial Mechanics. The Main Tasks and Methods (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  16. B. P. Kondratyev, Theory of Potential. New Methods and Problems with Solutions (Mir, Moscow, 2007) [in Russian].

  17. B. Sicardy, S. Renner, R. Leiva, F. Roques, M. El Mou-tamid, P. Santos-Sanz, and J. Desmars, in The Trans-Neptunian Solar System, Ed. by D. Prialnik, M. A. Barucci, and L. Young (Elsevier, Amsterdam, 2020), p. 249.

    Google Scholar 

  18. H. Alfven and G. Arrhenius, Evolution of the Solar System (Univ. Press of the Pacific, Honolulu, HI, 2004).

    Google Scholar 

  19. B. P. Kondratyev, Solar Sys. Res. 48, 396 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kondratyev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, B.P., Kornoukhov, V.S. Secular Evolution of Rings around Rotating Triaxial Gravitating Bodies. Astron. Rep. 64, 870–875 (2020). https://doi.org/10.1134/S1063772920100030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920100030

Navigation