Skip to main content
Log in

Functioning of malate dehydrogenase system in mesophyll and bundle sheath cells of maize leaves under salt stress conditions

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The formation of adaptive response to salt stress in mesophyll and bundle sheath cells of maize (Zea mays L.) leaves was studied at the level of operation of enzyme systems that participate in oxidation of malate. Functioning of four malate dehydrogenases (MDH), the components of this system, was studied and found to maintain malate and pyruvate pools, which are required for operation of the Hatch-Slack cycle and actively used for neutralization of salt treatment. The increase in activity of NAD-MDH was related to salt-induced synthesis of the additional isoform of MDH in mesophyll cells. Such changes in the isozyme pattern were not found in bundle sheath cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiotreitol

MDH:

malate dehydrogenase

ME:

malic enzyme

OAA:

oxaloacetate

SDH:

succinate dehydrogenase

TAC:

tricarboxylic acid cycle

References

  1. Bazarov, A.N., The Role of Monitoring in Reproduction of Irrigated Lands, Mezhdunarodn. S.-kh. Zh., 2006, no. 2, pp. 47–48.

  2. Yeo, A., Molecular Biology of Salt Tolerance in the Context of Whole-Plant Physiology, J. Exp. Bot., 1998, vol. 49, pp. 915–929.

    Article  CAS  Google Scholar 

  3. Pyurko, O.E., Mussienko, M.M., Okanenko, O.A., Taran, N.Yu., Kazakova, S.M., Khristova, T.E., and Kazakova, E.O., Multivariability and Multiple-Level of Components in Plant Adaptation Syndrome under Salinity, Fiziol. Biokh. Kul’t. Rast., 2004, vol. 36, pp. 15–26.

    Google Scholar 

  4. Balnokin, Yu.V., Ion Homeostasis and Osmoregulation in Halotolerant Microalgae, Russ. Plant Physiol., 1993, vol. 40, pp. 498–506.

    Google Scholar 

  5. Semikhatova, O.A., Energetika dykhaniya rastenii v norme i pri ekologicheskom stresse (Energy Aspect of Plant Respiration in Norm and under Ecological Stress), Leningrad: Nauka, 1990.

    Google Scholar 

  6. Golovko, T.K., Dykhanie rastenii (fiziologicheskie aspekty) (Plant Respiration: Physiological Aspects), St. Petersburg: Nauka, 1999.

    Google Scholar 

  7. Kafi, M., Stewart, W.S., and Borland, A.M., Carbohydrate and Proline Contents in Leaves, Roots, and Apices of Salt-Tolerant and Salt-Sensitive Wheat Cultivars, Russ. J. Plant Physiol., 2003, vol. 50, pp. 155–162.

    Article  CAS  Google Scholar 

  8. Alekhina, N.D., Balnokin, Yu.V., Gavrilenko, V.F., Zhigalova, T.V., Meichik, N.R., Nosov, A.M., Polesskaya, O.G., Kharitonashvilli, E.V., and Chub, V.V., Fiziologiya rastenii (Plant Physiology), Moscow: Akademiya, 2005.

    Google Scholar 

  9. Voronin, P.Yu., Manzhulin, A.V., Myasoedov, N.A., Balnokin, YuV., and Terent’eva, E.N., Morphological Types and Photosynthesis of C4 Plant Leaves under Long-Term Soil Salinity, Russ. J. Plant Physiol., 1995, vol. 42, pp. 310–320.

    CAS  Google Scholar 

  10. Schulze, J., Tesfaye, M., Litjens, R.H.M.G., Bucciarelli, B., Trepp, G., Miller, S., Samac, D., Allan, D., and Vance, C.P., Malate Plays a Central Role in Plant Nutrition, Plant Soil, 2002, vol. 247, pp. 133–139.

    Article  CAS  Google Scholar 

  11. Pineiru de Karval’yu, M.A.A., Zemlyanukhin, A.A., and Eprintsev, A.T., Malatdegidrogenaza vysshikh rastenii (Malate Dehydrogenase of Higher Plants), Voronezh: Voronezh. Gos. Univ., 1991.

    Google Scholar 

  12. Ivanishchev, V.V. and Kurganov, B.I., Enzymes of Malate Metabolism: Characteristics, Regulation of Activity, and Biological Role, Biokhimiya, 1992, vol. 57, pp. 653–661.

    CAS  Google Scholar 

  13. Eprintsev, A.T., Ivent’ev, A.N., and Popov, V.N., Distribution and Properties of Glycolate Oxidase from Bundle Sheath and Mesophyll Cells of Green Amaranth Leaves (Amaranthus retroflecsus), Russ. J. Plant Physiol., 2005, vol. 52, pp. 553–558.

    Article  CAS  Google Scholar 

  14. Zemlyanukhin, A.A. and Zemlyanukhin, L.A., Bol’shoi praktikum po fiziologii i biokhimii rastenii (Handbook on Plant Physiology and Biochemistry), Voronezh: Voronezh. Gos. Univ., 1996.

    Google Scholar 

  15. Davis, B.J., Disc Electrophoresis: 2. Method and Application to Human Serum Protein, Ann. New York Acad. Sci., 1994, vol. 121, pp. 404–427.

    Article  Google Scholar 

  16. Osterman, L.A., Metody issledovaniya belkov i nukleinovykh kislot: elektroforez i ul’tratsentrifugirovanie (Methods for Investigation of Proteins and Nucleic Acids: Electrophoresis and Ultracentrifugation), Moscow: Nauka, 1981.

    Google Scholar 

  17. Fieldes, M.A., An Explanation of the Achromatic Bands Produced by Peroxidase Isozymes in Polyacrylamide Electrophoresis Gels Stained for Malatedehydrogenase, Electrophoresis, 1992, vol. 13, pp. 82–86.

    Article  PubMed  CAS  Google Scholar 

  18. Detlaf, T.A., Problemy biologii razvitiya. Metody biologii razvitiya (Problems of Developmental Biology. Methods for Developmental Biology), Moscow: Nauka, 1974.

    Google Scholar 

  19. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  20. Eprintsev, A.T. and Popov, V.N., Fermentativnaya regulyatsiya metabolizma di-i trikarbonovykh kislot v rasteniyakh (Enzymatic Regulation of Di-and Tricarboxylic Acids in Plants), Voronezh: Voronezh. Gos. Univ., 1999.

    Google Scholar 

  21. Semikhatova, O.A., Ivanova, T.I., and Yudina, O.S., The Respiratory Price in Plants Growing under Salinity, Russ. Plant Physiol., 1993, vol. 40, pp. 558–566.

    CAS  Google Scholar 

  22. Eprintsev, A.T., Solodilova, O.S., and Khozhainova, G.N., The Role of Free Amino Acids under Maize Adaptation to Salinity Stress, Vestn. Voronezh. Gos. Univ., Ser. Khimiya, Biology, Pharmacia, 2003, no. 2, pp. 132–135.

  23. Edvards, G. and Walker, D., Mechanisms and Cellular and Environmental Regulation of Photosynthesis, Oxford, 1983.

  24. Hare, P.D. and Cress, W.A., Metabolic Implications of Stress-Induced Proline Accumulation during Stress, Plant, Cell Environ., 1998, vol. 21, pp. 535–553.

    Article  CAS  Google Scholar 

  25. Faleiro, A.C., Gazoli, R.A., da Silva, P., de Fatima, M., and Machado, M., Malate Dehydrogenase Isozyme Patterns in Cladophylls of a Opuntia ficus-indica Mill. (Cactaceae) Clonal Population, Acta Biol. Sci., 2003, vol. 25, pp. 207–211.

    CAS  Google Scholar 

  26. Balnokin, Yu.V., Kotov, A.A., Myasoedov, N.A., Khailova, G.F., Kurkova, E.B., Lun’kov, R.V., and Kotova, L.M., Involvement of Long-Distance Na+ Transport in Maintaining Water Potential Gradient in the Medium-Root-Leaf System of a Halophyte Suaeda altissima, Russ. J. Plant Physiol., 2005, vol. 52, pp. 489–496.

    Article  CAS  Google Scholar 

  27. Rakhmankulova, Z.F., Mukminova, G.Kh., and Usmanov, I.Yu., Evaluation of Adaptation Costs Based on the Analysis of Growth and Respiratory Component Changes in Plants with Different Resistance to Water Stress, Vestn. Bashkir. Gos. Univ., 2001, no. 2(1), pp. 71–73.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Eprintsev.

Additional information

Original Russian Text © A.T. Eprintsev, O.S. Fedorina, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 6, pp. 820–827.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eprintsev, A.T., Fedorina, O.S. Functioning of malate dehydrogenase system in mesophyll and bundle sheath cells of maize leaves under salt stress conditions. Russ J Plant Physiol 54, 728–735 (2007). https://doi.org/10.1134/S1021443707060027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707060027

Key words

Navigation