Skip to main content
Log in

Receptor-mediated endocytosis and cytoskeleton

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Receptor-mediated endocytosis is the most specific pathway for macromolecules and macromolecular complexes generally designated as ligands to enter cells. Upon binding to their transmembrane receptors, the ligands enter endocytic vesicles that fuse with each other giving rise to the so-called early endosomes. The sorting of ligand-receptor complexes internalized in these endosomes depends on their nature: metabolic receptors are recycled back to the plasma membrane, while signaling receptors and their ligands (e.g. receptor tyrosine kinases or receptors associated with tyrosine kinase) are delivered to internal vesicles of the multivesicular late endosomes and finally are degraded after interaction with lysosomes. During these processes, endosomes undergo translocation from the cell periphery to the juxtanuclear region, which is accompanied by multiple fusion, invagination, tabulation, and membrane fission events. This review considers modern concepts of the sorting mechanisms of ligand-receptor complexes, the crosstalk between endosomes, microtubules, and actin, and the role of this crosstalk in endosome maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EE:

early endosomes

EGF:

epidermal growth factor

ER:

endoplasmic reticulum

JNR:

juxtanuclear region

LDL:

low density lipoproteins

LE:

late endosomes

MT:

microtubules

MVBs:

multivesicular bodies

PI3P:

phosphatidylinositol-3-monophosphate

TGN:

trans-Golgi network

References

  1. Stahl, P., and Schwartz, A. L. (1986) Receptor-mediated endocytosis, J. Clin. Invest., 77, 657–662.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Sorkin, A. (2004) Cargo recognition during clathrin-mediated endocytosis: a team effort, Curr. Opin. Cell Biol., 16, 392–399.

    PubMed  CAS  Google Scholar 

  3. Marks, M. S., Woodruff, L., Ohio, H., and Bonifacino, J. S. (1996) Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components, J. Cell Biol., 135, 341–354.

    PubMed  CAS  Google Scholar 

  4. Shen, D., Wang, X., and Xu, H. (2011) Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes, Bioessays, 33, 448–457.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Abe, K., and Puertollano, R. (2011) Role of TRP channels in the regulation of the endosomal pathway, Physiology (Bethesda), 26, 14–22.

    CAS  Google Scholar 

  6. Vina-Vilaseca, A., Bender-Sigel, J., Sorkina, T., Closs, E. I., and Sorkin, A. (2011) Protein kinase C-dependent ubiquitination and clathrin-mediated endocytosis of the cationic amino acid transporter CAT-1, J. Biol. Chem., 286, 8697–8706.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Mousavi, S. A., Malerod, L., Berg, T., and Kjeken, R. (2004) Clathrin-dependent endocytosis, Biochem. J., 377, 1–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Gruenberg, J., Griffiths, G., and Howell, K. E. (1989) Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro, J. Cell Biol., 108, 1301–1316.

    PubMed  CAS  Google Scholar 

  9. Ali, N., and Evans, W. H. (1990) Priority targeting of glycosyl-phosphatidylinositol-anchored proteins to the bilecanalicular (apical) plasma membrane of hepatocytes. Involvement of “late” endosomes, Biochem. J., 271, 193–199.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Sorkin, A., Krolenko, S., Kudrjavtceva, N., Lazebnik, J., Teslenko, L., Soderquist, A. M., and Nikolsky, N. (1991) Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways, J. Cell Biol., 112, 55–63.

    PubMed  CAS  Google Scholar 

  11. Scott, C. C., Vacca, F., and Gruenberg, J. (2014) Endosome maturation, transport and functions, Semin. Cell Dev. Biol., pii: S1084-9521(14)00070-6.

    Google Scholar 

  12. Linderman, J. J., and Lauffenburger, D. A. (1986) Analysis of intracellular receptor/ligand sorting. Calculation of mean surface and bulk diffusion times within a sphere, Biophys. J., 50, 295–305.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Forgac, M., Cantley, L., Wiedenmann, B., Altstiel, L., and Branton, D. (1983) Clathrin-coated vesicles contain an ATP-dependent proton pump, Proc. Natl. Acad. Sci. USA, 80, 1300–1303.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Ostlund, R. E., Jr., Pfleger, B., and Schonfeld, G. (1979) Role of microtubules in low density lipoprotein processing by cultured cells, J. Clin. Invest., 63, 75–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Hopkins, C. R., Miller, K., and Beardmore, J. M. (1985) Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake, J. Cell. Sci. Suppl., 3, 173–186.

    PubMed  CAS  Google Scholar 

  16. Felder, S., Miller, K., Moehren, G., Ullrich, A., Schlessinger, J., and Hopkins, C. R. (1990) Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body, Cell, 61, 623–634.

    PubMed  CAS  Google Scholar 

  17. Van Weering, J. R., and Cullen, P. J. (2014) Membrane-associated cargo recycling by tubule-based endosomal sorting, Semin. Cell Dev. Biol., pii: S1084-9521(14)00043-3.

    Google Scholar 

  18. Woodman, P. G., and Futter, C. E. (2008) Multivesicular bodies: coordinated progression to maturity, Curr. Opin. Cell Biol., 20, 408–414.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Gonnord, P., Blouin, C. M., and Lamaze, C. (2012) Membrane trafficking and signaling: two sides of the same coin, Semin. Cell Dev. Biol., 23, 154–164.

    PubMed  CAS  Google Scholar 

  20. Luzio, J. P., Gray, S. R., and Bright, N. A. (2010) Endosome-lysosome fusion, Biochem. Soc. Trans., 38, 1413–1416.

    PubMed  CAS  Google Scholar 

  21. Aniento, F., Emans, N., Griffiths, G., and Gruenberg, J. (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes, J. Cell Biol., 123, 1373–1387.

    PubMed  CAS  Google Scholar 

  22. Herman, B., and Albertini, D. F. (1984) A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, J. Cell Biol., 98, 565–576.

    PubMed  CAS  Google Scholar 

  23. Wacker, I., Kaether, C., Kromer, A., Migala, A., Almers, W., and Gerdes, H. H. (1997) Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein, J. Cell Sci., 110, 1453–1463.

    PubMed  CAS  Google Scholar 

  24. Bryantseva, S. A., and Zhapparova, O. N. (2012) Bidirectional transport of organelles: unity and struggle of opposing motors, Cell Biol. Int., 36, 1–6.

    PubMed  Google Scholar 

  25. Barr, F., and Lambright, D. G. (2010) Rab GEFs and GAPs, Curr. Opin. Cell Biol., 22, 461–470.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Pfeffer, S. R. (2001) Rab GTPases: specifying and deciphering organelle identity and function, Trends Cell Biol., 11, 487–491.

    PubMed  CAS  Google Scholar 

  27. Cai, H., Reinisch, K., and Ferro-Novick, S. (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle, Dev. Cell, 12, 671–682.

    PubMed  CAS  Google Scholar 

  28. Markgraf, D. F., Peplowska, K., and Ungermann, C. (2007) Rab cascades and tethering factors in the endomembrane system, FEBS Lett., 581, 2125–2130.

    PubMed  CAS  Google Scholar 

  29. Hutagalung, A. H., and Novick, P. J. (2011) Role of Rab GTPases in membrane traffic and cell physiology, Physiol. Rev., 91, 119–149.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J., and Zerial, M. J. (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11, Cell Biol., 149, 901–914.

    CAS  Google Scholar 

  31. Stenmark, H., Parton, R. G., Steele-Mortimer, O., Lutcke, A., Gruenberg, J., and Zerial, M. (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis, EMBO J., 13, 1287–1296.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Zeigerer, A., Gilleron, J., Bogorad, R. L., Marsico, G., Nonaka, H., Seifert, S., Epstein-Barash, H., Kuchimanchi, S., Peng, C. G., Ruda, V. M., Del Conte-Zerial, P., Hengstler, J. G., Kalaidzidis, Y., Koteliansky, V., and Zerial, M. (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo, Nature, 485, 465–470.

    PubMed  CAS  Google Scholar 

  33. Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005) Rab conversion as a mechanism of progression from early to late endosomes, Cell, 122, 735–749.

    PubMed  CAS  Google Scholar 

  34. Chaineau, M., Ioannou, M. S., and McPherson, P. S. (2013) Rab35: GEFs, GAPs and effectors, Traffic, 14, 1109–1117.

    PubMed  CAS  Google Scholar 

  35. Zhu, H., Liang, Z., and Li, G. (2009) Rabex-5 is a Rab22 effector and mediates a Rab22-Rab5 signaling cascade in endocytosis, Mol. Biol. Cell, 20, 4720–4729.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Zhang, C., Li, A., Zhang, X., and Xiao, H. (2011) A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation, J. Biol. Chem., 286, 9373–9381.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Barbieri, M. A., Fernandez-Pol, S., Hunker, C., Horazdovsky, B. H., and Stahl, P. D. (2004) Role of rab5 in EGF receptor-mediated signal transduction, Eur. J. Cell Biol., 83, 305–314.

    PubMed  CAS  Google Scholar 

  38. Shin, H. W., Hayashi, M., Christoforidis, S., Lacas-Gervais, S., Hoepfner, S., Wenk, M. R., Modregger, J., Uttenweiler-Joseph, S., Wilm, M., Nystuen, A., Frankel, W. N., Solimena, M., De Camilli, P., and Zerial, M. (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway, J. Cell Biol., 170, 607–618.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Birkeland, H. C., and Stenmark, H. (2004) Protein targeting to endosomes and phagosomes via FYVE and PX domains, Curr. Top Microbiol. Immunol., 282, 89–115.

    PubMed  CAS  Google Scholar 

  40. Lawe, D. C., Chawla, A., Merithew, E., Dumas, J., Carrington, W., Fogarty, K., Lifshitz, L., Tuft, R., Lambright, D., and Corvera, S. (2002) Sequential roles for phosphatidylinositol-3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1, J. Biol. Chem., 277, 8611–8617.

    PubMed  CAS  Google Scholar 

  41. Hickey, C. M., and Wickner, W. (2010) HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly, Mol. Biol. Cell, 21, 2297–2305.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Haft, C. R., de la Luz Sierra, M., Barr, V. A., Haft, D. H., and Taylor, S. I. (1998) Identification of a family of sorting nexin molecules and characterization of their association with receptors, Mol. Cell. Biol., 18, 7278–7287.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Van Weering, J. R., Verkade, P., and Cullen, P. J. (2010) SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting, Semin. Cell Dev. Biol., 21, 371–380.

    PubMed  PubMed Central  Google Scholar 

  44. Carlton, J., Bujny, M., Peter, B. J., Oorschot, V. M., Rutherford, A., Mellor, H., Klumperman, J., McMahon, H. T., and Cullen, P. J. (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides, Curr. Biol., 14, 1791–1800.

    PubMed  CAS  Google Scholar 

  45. Skanland, S. S., Walchli, S., Brech, A., and Sandvig, K. (2009) SNX4 in complex with clathrin and dynein: Implications for endosome movement, PLoS ONE, 4, e5935.

    PubMed  PubMed Central  Google Scholar 

  46. Gullapalli, A., Garrett, T. A., Paing, M. M., Griffin, C. T., Yang, Y., and Trejo, J. (2004) A role for sorting nexin 2 in epidermal growth factor receptor down-regulation: evidence for distinct functions of sorting nexin 1 and 2 in protein trafficking, Mol. Biol. Cell, 15, 2143–2155.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Chin, L. S., Raynor, M. C., Wei, X., Chen, H. Q., and Li, L. (2001) Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor, J. Biol. Chem., 276, 7069–7078.

    PubMed  CAS  Google Scholar 

  48. Traer, C. J., Rutherford, A. C., Palmer, K. J., Wassmer, T., Oakley, J., Attar, N., Carlton, J. G., Kremerskothen, J., Stephens, D. J., and Cullen, P. J. (2007) SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment, Nat. Cell Biol., 9, 1370–1380.

    PubMed  CAS  Google Scholar 

  49. Wassmer, T., Attar, N., Harterink, M., van Weering, J. R., Traer, C. J., Oakley, J., Goud, B., Stephens, D. J., Verkade, P., Korswagen, H. C., and Cullen, P. J. (2009) The retromer coat complex coordinates endosomal sorting and dyneinmediated transport, with carrier recognition by the tans-Golgi network, Dev. Cell, 17, 110–122.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Bowtell, D. D., and Langdon, W. Y. (1995) The protein product of the c-cbl oncogene rapidly complexes with the EGF receptor and is tyrosine phosphorylated following EGF stimulation, Oncogene, 11, 1561–1567.

    PubMed  CAS  Google Scholar 

  51. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S., and Sorkin, A. (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain, Mol. Cell, 21, 737–748.

    PubMed  CAS  Google Scholar 

  52. De Melker, A. A., van der Horst, G., Calafat, J., Jansen, H., and Borst, J. (2001) c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route, J. Cell Sci., 114, 2167–2178.

    PubMed  Google Scholar 

  53. Melikova, M. S., Kondratov, K. A., and Kornilova, E. S. (2006) Two different stages of epidermal growth factor (EGF) receptor endocytosis are sensitive to free ubiquitin depletion produced by proteasome inhibitor MG132, Cell Biol. Int., 30, 31–43.

    PubMed  CAS  Google Scholar 

  54. Wright, M. H., Berlin, I., and Nash, P. D. (2011) Regulation of endocytic sorting by ESCRT-DUB-mediated deubiquitination, Cell Biochem. Biophys., 60, 39–46.

    PubMed  CAS  Google Scholar 

  55. Kondratov, K. A., Chernorudsky, A. L., Amosova, A. P., and Kornilova, E. S. (2009) Analysis of the effect of Tyrphostin AF1478 on the behavior of internalized EGF receptor at different stages of endocytosis, Tsitologiya, 51, 520–525.

    CAS  Google Scholar 

  56. Raiborg, C., Bremnes, B., Mehlum, A., Gillooly, D. J., D’Arrigo, A., Stang, E., and Stenmark, H. (2001) FYVE and coiled-coil domains determine the specific localization of Hrs to early endosomes, J. Cell Sci., 114, 2255–2263.

    PubMed  CAS  Google Scholar 

  57. Mageswaran, S. K., Dixon, M. G., Curtiss, M., Keener, J. P., and Babst, M. (2014) Binding to any ESCRT can mediate ubiquitin-independent cargo sorting, Traffic, 15, 212–229.

    PubMed  CAS  Google Scholar 

  58. Lim, J., Son, W. S., Park, J. K., Kim, E. E., Lee, B. J., and Ahn, H. C. (2011) Solution structure of UIM and interaction of tandem ubiquitin binding domains in STAM1 with ubiquitin, Biochem. Biophys. Res. Commun., 405, 24–30.

    PubMed  CAS  Google Scholar 

  59. Kato, M., Miyazawa, K., and Kitamura, N. (2000) A deubiquitinating enzyme UBPY interacts with the Src homology 3 domain of Hrs-binding protein via a novel binding motif PX(V/I)(D/N)RXXKP, J. Biol. Chem., 275, 37481–37487.

    PubMed  CAS  Google Scholar 

  60. Raiborg, C., Wesche, J., Malerd, L., and Stenmark, H. (2006) Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains, J. Cell Sci., 119, 2414–2424.

    PubMed  CAS  Google Scholar 

  61. Chin, L. S., Raynor, M. C., Wei, X., Chen, H. Q., and Li, L. (2001) Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor, J. Biol. Chem., 276, 7069–7078.

    PubMed  CAS  Google Scholar 

  62. Stern, K. A., Visser-Smit, G. D., Place, T. L., Winistorfer, S., Piper, R. C., and Lill, N. L. (2007) Epidermal growth factor receptor fate is controlled by Hrs tyrosine phosphorylation sites that regulate Hrs degradation, Mol. Cell Biol., 27, 888–898.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Hoeller, D., Crosetto, N., Blagoev, B., Raiborg, C., Tikkanen, R., Wagner, S., Kowanetz, K., Breitling, R., Mann, M., Stenmark, H., and Dikic, I. (2006) Regulation of ubiquitin-binding proteins by monoubiquitination, Nat. Cell Biol., 8, 163–169.

    PubMed  CAS  Google Scholar 

  64. Sun, W., Yan, Q., Vida, T. A., and Bean, A. J. (2003) Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex, J. Cell Biol., 162, 125–137.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Yan, Q., Sun, W., McNew, J. A., Vida, T. A., and Bean, A. J. (2004) Ca2+ and N-ethylmaleimide-sensitive factor differentially regulate disassembly of SNARE complexes on early endosomes, J. Biol. Chem., 279, 18270–18276.

    PubMed  CAS  Google Scholar 

  66. Hurley, J. H. (2008) ESCRT complexes and the biogenesis of multivesicular bodies, Curr. Opin. Cell Biol., 20, 4–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Slagsvold, T., Pattni, K., Malerod, L., and Stenmark, H. (2006) Endosomal and non-endosomal functions of ESCRT proteins, Trends Cell Biol., 16, 317–326.

    PubMed  CAS  Google Scholar 

  68. Hurley, J. H., and Emr, S. D. (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network, Annu. Rev. Biophys. Biomol. Struct., 35, 277–298.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Williams, R. L., and Urbe, S. (2007) The emerging shape of the ESCRT machinery, Nat. Rev. Mol. Cell Biol., 8, 355–368.

    PubMed  CAS  Google Scholar 

  70. Vaccari, T., Rusten, T. E., Menut, L., Nezis, I. P., Brech, A., Stenmark, H., and Bilder, D. (2009) Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants, J. Cell Sci., 122, 2413–2423.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Adell, M. A. Y., and Teis, D. (2011) Assembly and disassembly of the ESCRT-III membrane scission complex, FEBS Lett., 585, 3191–3196.

    PubMed  Google Scholar 

  72. Horgan, C. P., and McCaffrey, M. W. (2011) Rab GTPases and microtubule motors, Biochem. Soc. Trans., 39, 1202–1206.

    PubMed  CAS  Google Scholar 

  73. Schonteich, E., Wilson, G. M., Burden, J., Hopkins, C. R., Anderson, K., Goldenring, J. R., and Prekeris, R. (2008) The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling, J. Cell Sci., 121, 3824–3833.

    PubMed  CAS  Google Scholar 

  74. Hoepfner, S., Severin, F., Cabezas, A., Habermann, B., Runge, A., Gillooly, D., Stenmark, H., and Zerial, M. (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B, Cell, 121, 437–450.

    PubMed  CAS  Google Scholar 

  75. Bielli, A., Thornqvist, P. O., Hendrick, A. G., Finn, R., Fitzgerald, K., and McCaffrey, M. W. (2001) The small GTPase Rab4A interacts with the central region of cytoplasmic dynein light intermediate chain-1, Biochem. Biophys. Res. Commun., 281, 1141–1153.

    PubMed  CAS  Google Scholar 

  76. Horgan, C. P., Hanscom, S. R., Jolly, R. S., Futter, C. E., and McCaffrey, M. W. (2010) Rab11-FIP3 binds dynein light intermediate chain 2 and its overexpression fragments the Golgi complex, Biochem. Biophys. Res. Commun., 394, 387–392.

    PubMed  CAS  Google Scholar 

  77. Horgan, C. P., Hanscom, S. R., Jolly, R. S., Futter, C. E., and McCaffrey, M. W. (2010) Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment, J. Cell Sci., 123, 181–191.

    PubMed  CAS  Google Scholar 

  78. Jordens, I., Fernandez-Borja, M., Marsman, M., Dusseljee, S., Janssen, L., Calafat, J., Janssen, H., Wubbolts, R., and Neefjes, J. (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors, Curr. Biol., 11, 1680–1685.

    PubMed  CAS  Google Scholar 

  79. Mooren, O. L., Galletta, B. J., and Cooper, J. A. (2012) Roles for actin assembly in endocytosis, Annu. Rev. Biochem., 81, 661–686.

    PubMed  CAS  Google Scholar 

  80. Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S., and Holzbaur, E. L. (2013) Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport, J. Neurosci., 33, 13190–13203.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Lomakin, A. J., Semenova, I., Zaliapin, I., Kraikivski, P., Nadezhdina, E., Slepchenko, B. M., Akhmanova, A., and Rodionov, V. (2009) CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport, Dev. Cell., 17, 323–333.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Pierre, P., Pepperkok, R., and Kreis, T. E. (1994) Molecular characterization of two functional domains of CLIP-170 in vivo, J. Cell Sci., 107, 1909–1920.

    PubMed  CAS  Google Scholar 

  83. Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A., and Zerial, M. (1999) Rab5 regulates motility of early endosomes on microtubules, Nat. Cell Biol., 1, 376–382.

    PubMed  CAS  Google Scholar 

  84. Zhang, J., Li, S., Fischer, R., and Xiang, X. (2003) Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent, Mol. Biol. Cell, 14, 1479–1488.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Huckaba, T. M., Gennerich, A., Wilhelm, J. E., Chishti, A. H., and Vale, R. D. (2011) Kinesin-73 is a processive motor that localizes to Rab5-containing organelles, J. Biol. Chem., 286, 7457–7467.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Loubery, S., Wilhelm, C., Hurbain, I., Neveu, S., Louvard, D., and Coudrier, E. (2008) Different microtubule motors move early and late endocytic compartments, Traffic, 9, 492–509.

    PubMed  CAS  Google Scholar 

  87. Ligon, L. A., Tokito, M., Finklestein, J. M., Grossman, F. E., and Holzbaur, E. L. (2004) A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity, J. Biol. Chem., 279, 19201–19208.

    PubMed  CAS  Google Scholar 

  88. Zlobina, M. V., Kharchenko, M. V., and Kornilova, E. S. (2013) Analysis of the dynamics of EGF receptor endocytosis by the images of confocal light microscopy on fixed cells, Tsitologiya, 55, 348–357.

    CAS  Google Scholar 

  89. Pringle, J., Muthukumar, A., Tan, A., Crankshaw, L., Conway, L., and Ross, J. L. (2013) Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65, J. Phys. Condens. Matter, 25, 374103.

    PubMed  Google Scholar 

  90. Zlobina, M. V., Kharchenko, M. V., Latkin, D. S., and Kornilova, E. S. (2010) Acetylation of microtubules during endocytosis of the epidermal growth factor (c-ErbB1) receptor in interphasic HeLa cells, Tsitologiya, 52, 466–476.

    CAS  Google Scholar 

  91. Yan, Q., Sun, W., Kujala, P., Lotfi, Y., Vida, T. A., and Bean, A. J. (2005) CART: An Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling, Mol. Biol. Cell., 16, 2470–2482.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Li, L., and Cohen, S. N. (1996) Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells, Cell, 85, 319–329.

    PubMed  CAS  Google Scholar 

  93. Lovric, J., Dammeier, S., Kieser, A., Mischak, H., and Kolch, W. (1998) Activated raf induces the hyperphosphorylation of stathmin and the reorganization of the microtubule network, J. Biol. Chem., 273, 22848–22855.

    PubMed  CAS  Google Scholar 

  94. Allison, R., Lumb, J. H., Fassier, C., Connell, J. W., Ten Martin, D., Seaman, M. N., Hazan, J., and Reid, E. (2013) An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome, J. Cell Biol., 202, 527–543.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Chua, J., Rikhy, R., and Lippincott-Schwartz, J. (2009) Dynamin 2 orchestrates the global actomyosin cytoskeleton for epithelial maintenance and apical constriction, Proc. Natl. Acad. Sci. USA, 106, 20770–20775.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Helgeson, L. A., and Nolen, B. J. (2013) Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP, Elife, 2, e00884.

    PubMed  PubMed Central  Google Scholar 

  97. Gomez, T. S., Gorman, J. A., de Narvajas, A. A., Koenig, A. O., and Billadeau, D. D. (2012) Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks, Mol. Biol. Cell., 23, 3215–3228.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Pal, A., Severin, F., Hopfner, S., and Zerial, M. (2008) Regulation of endosome dynamics by Rab5 and Huntingtin-HAP40 effector complex in physiological versus pathological conditions, Methods Enzymol., 438, 239–257.

    PubMed  CAS  Google Scholar 

  99. Deribe, Y. L., Wild, P., Chandrashaker, A., Curak, J., Schmidt, M. H., Kalaidzidis, Y., Milutinovic, N., Kratchmarova, I., Buerkle, L., Fetchko, M. J., Schmidt, P., Kittanakom, S., Brown, K. R., Jurisica, I., Blagoev, B., Zerial, M., Stagljar, I., and Dikic, I. (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6, Sci. Signal., 2, ra84.

    PubMed  Google Scholar 

  100. Gao, Y. S., Hubbert, C. C., and Yao, T. P. (2010) The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation, J. Biol. Chem., 285, 11219–11226.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Purev, E., Neff, L., Horne, W. C., and Baron, R. (2009) c-Cbl and Cbl-b act redundantly to protect osteoclasts from apoptosis and to displace HDAC6 from β-tubulin, stabilizing microtubules and podosomes, Mol. Biol. Cell, 20, 4021–4030.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kornilova.

Additional information

Original Russian Text © E. S. Kornilova, 2014, published in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1079–1094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornilova, E.S. Receptor-mediated endocytosis and cytoskeleton. Biochemistry Moscow 79, 865–878 (2014). https://doi.org/10.1134/S0006297914090041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914090041

Key words

Navigation