Skip to main content
Log in

Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Thermodynamic parameters of defects (presumably, defective SiO molecules) in the network of amorphous SiO2 are obtained by analyzing the viscosity of the melt with the use of the Doremus model. The best agreement between the experimental data on viscosity and the calculations is achieved when the enthalpy and entropy of the defect formation in the amorphous SiO2 network are H d =220 kJ/mol and S d =16.13R, respectively. The analysis of the network defect concentration shows that, above the glass-transition temperature (T g ), the defects form dynamic percolation clusters. This result agrees well with the results of molecular dynamics modeling, which means that the glass transition in amorphous SiO2 can be considered as a percolation phase transition. Below T g , the geometry of the distribution of network defects is Euclidean and has a dimension d=3. Above the glass-transition temperature, the geometry of the network defect distribution is non-Euclidean and has a fractal dimension of d f =2.5. The temperature T g can be calculated from the condition that percolation arises in the defect system. This approach leads to a simple analytic formula for the glass-transition temperature: T g =H d /((S d +1.735R). The calculated value of the glass-transition temperature (1482 K) agrees well with that obtained from the recent measurements of T g for amorphous SiO2 (1475 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  2. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. I. Klinger, Phys. Rep. 165, 275 (1988).

    Article  ADS  Google Scholar 

  4. I. Campbell, P.-O. Mari, A. Alegria, and J. Colmenero, Europhys. News 3/4, 46 (1998).

    Google Scholar 

  5. A. G. Hunt, J. Non-Cryst. Solids 274, 93 (2000).

    Article  Google Scholar 

  6. K. Binder, J. Non-Cryst. Solids 274, 332 (2000).

    Article  Google Scholar 

  7. N. N. Medvedev, A. Geider, and W. Brostow, J. Chem. Phys. 93, 8337 (1990).

    Article  ADS  Google Scholar 

  8. A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 76, 115 (2002) [JETP Lett. 76, 104 (2002)].

    Google Scholar 

  9. R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).

    Article  ADS  Google Scholar 

  10. M. I. Ozhovan, Pis’ma Zh. Éksp. Teor. Fiz. 79, 97 (2004) [JETP Lett. 79, 85 (2004)].

    Google Scholar 

  11. M. I. Ojovan and W. E. Lee, J. Appl. Phys. 95, 3803 (2004).

    Article  ADS  Google Scholar 

  12. J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 (1987).

    Article  ADS  Google Scholar 

  13. G. Urbain, Y. Bottinga, and P. Richet, Geochim. Cosmochim. Acta 46, 1061 (1982).

    Article  ADS  Google Scholar 

  14. G. Hetherington, K. H. Jack, and J. C. Kennedy, Phys. Chem. Glasses 5, 130 (1964).

    Google Scholar 

  15. N. M. Pavlushkin, Fundamentals of Sitalle Technology (Stroiizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  16. H. Scher and R. Zallen, J. Chem. Phys. 53, 3759 (1970).

    Article  Google Scholar 

  17. M. I. Ozhovan, Zh. Éksp. Teor. Fiz. 104, 4021 (1993) [JETP 77, 939 (1993)].

    Google Scholar 

  18. R. Bruning, J. Non-Cryst. Solids 330, 13 (2003).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 12, 2004, pp. 769–771.

Original Russian Text Copyright © 2004 by Ojovan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojovan, M.I. Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. Jetp Lett. 79, 632–634 (2004). https://doi.org/10.1134/1.1790021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1790021

PACS numbers

Navigation