Skip to main content
Log in

Dynamical evolution of multiple stars: Influence of the initial parameters of the system

Astronomy Reports Aims and scope Submit manuscript

Abstract

We have modeled the dynamical evolution of small stellar groups with N=6 components in the framework of the gravitational N-body problem, taking into account possible mergers of stars and ejection of single and binary stars. We study the influence of the initial global parameters of the systems (the mass spectrum, average size, virial factor) on their dynamical evolution. The distribution over states is analyzed for a time equal to 300 initial crossing times of the system. The parameters of binary and stable triple systems that form are studied, as well as the properties of ejected single and binary stars. The rate of dynamical evolution in both expanding and contracting groups is higher than in systems in a state of virial equilibrium. The dynamical evolution is more intense in the case of unequal masses than when the system initially consists of equal-mass stars. In most cases, the evolution of a group ends with the formation of a binary or stable triple system. The semimajor axes of the binaries range from several hundredths to several times the initial size of the system. The distribution of the eccentricities of the binaries formed is consistent with an f(e)=2e law. When the initial size of the group is small, the number of final binaries with large eccentricities, and also of stable triple systems with elongated inner-binary orbits, decreases due to merging. As a rule, stable triple systems are substantially hierarchical (the average ratio of the semimajor axes of the inner and outer binaries is 1: 20). On average, the eccentricities of the inner binaries exceed those of the outer binaries: they are equal to \(\overline {e_{in} } \approx 0.7\) and \(\overline {e_{ex} } \approx 0.5\), respectively. The velocities of ejected stars are from several to several tens of km/s, and tend to increase as the initial size of the system, and hence its virial coefficient, decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. B. Larson, IAU Symp. No. 200: The Formation of Binary Stars, Ed. by H. Zinnecker and R. D. Mathieu (2001), p. 93.

  2. A. P. Boss, Astrophys. J. 410, 157 (1993).

    Article  ADS  Google Scholar 

  3. J. K. Truelove, R. I. Klein, C. F. McKee, et al., Astrophys. J. 495, 821 (1998).

    Article  ADS  Google Scholar 

  4. T. van Albada, Bull. Astron. Inst. Netherlands 19, 479 (1968).

    ADS  Google Scholar 

  5. A. Burkert and P. Bodenheimer, Mon. Not. R. Astron. Soc. 280, 1190 (1996).

    ADS  Google Scholar 

  6. R. S. Klessen, A. Burkert, and M. R. Bate, Astrophys. J. 501, L205 (1998).

    Article  ADS  Google Scholar 

  7. R. S. Harrington, Astron. J. 80, 1081 (1975)

    Article  ADS  Google Scholar 

  8. M. F. Sterzik and R. H. Durisen, Astron. Astrophys. 339, 95 (1998).

    ADS  Google Scholar 

  9. M. F. Sterzik and R. H. Durisen, Astron. Astrophys. 304, L9 (1995).

    ADS  Google Scholar 

  10. L. Kiseleva, J. Colin, B. Dauphole, and P. Eggleton, Mon. Not. R. Astron. Soc. 301, 759 (1998).

    Article  ADS  Google Scholar 

  11. M. F. Sterzik and A. A. Tokovinin, Astron. Astrophys. 384, 1030 (2002).

    Article  ADS  Google Scholar 

  12. A. V. Rubinov, A. V. Petrova, and V. V. Orlov, Astron. Zh. 79, 1044 (2002) [Astron. Rep. 46, 942 (2002)].

    Google Scholar 

  13. S. Mikkola and S. J. Aarseth, Celest. Mech. Dyn. Astron. 57, 439 (1993).

    ADS  MathSciNet  Google Scholar 

  14. E. E. Salpeter, Astrophys. J. 121, 161 (1955).

    Article  ADS  Google Scholar 

  15. B. G. Elmegreen and E. Falgarone, Astrophys. J. 471, 816 (1996).

    Article  ADS  Google Scholar 

  16. V. G. Golubev, Dokl. Akad. Nauk SSSR 174, 767 (1967).

    MATH  Google Scholar 

  17. V. A. Ambartsumyan, Astron. Zh. 14, 207 (1937).

    Google Scholar 

  18. J. J. Monaghan, Mon. Not. R. Astron. Soc. 176, 63 (1976).

    ADS  Google Scholar 

  19. R. Neuhäuser, M. F. Sterzik, G. Torres, and E. L. Martin, Astron. Astrophys. 299, L13 (1995).

    ADS  Google Scholar 

  20. M. F. Sterzik, J. M. Alcala, R. Neuhäuser, and J. H. M. M. Schmitt, Astron. Astrophys. 297, 418 (1995).

    ADS  Google Scholar 

  21. M. F. Sterzik and J. H. M. M. Schmitt, Astron. J. 114, 1673 (1997).

    ADS  Google Scholar 

  22. F. C. Adams and P. C. Myers, Astrophys. J. 553, 744 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 81, No. 1, 2004, pp. 50–57.

Original Russian Text Copyright © 2004 by Rubinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinov, A.V. Dynamical evolution of multiple stars: Influence of the initial parameters of the system. Astron. Rep. 48, 45–51 (2004). https://doi.org/10.1134/1.1641122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1641122

Keywords

Navigation