Skip to main content
Log in

Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review)

  • Structure of Macromolecular Compounds. Review
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The piezoelectricity observed in poly(vinylidene fluoride) (PVDF) and its copolymers involves three components that are associated with the presence of at least two phases (crystalline and amorphous) in the polymer structure. The main contributions to the phenomenon observed are made by the size effect and electrostriction, which are related to each other. These contributions manifest themselves through the mechanism of strain-induced reversible transformations of a number of domains of the anisotropic amorphous phase into the crystalline state under the action of mechanical or electrical fields. With due regard for different packings of chains in the amorphous and crystalline phases, this mechanism accounts for the large Poisson ratios μ31 obtained for textured films of flexible-chain crystallizing polymers. The dependence of the piezoelectric coefficient d 32 on the static stress in textured films is governed by the change in the fraction of the crystalline phase due to strong anisotropy of the elastic constants in the film plane. It is shown that the shear deformations of polymers are characterized by a strong piezoelectric response. The specific features revealed in the piezoelectric effect under bending deformations are described for films with an inhomogeneous distribution of polarization over the cross section. The general regularities of the electrostriction in the polymers and inorganic relaxor ferroelectrics studied are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969).

    Google Scholar 

  2. V. V. Kochervinskii, Usp. Khim. 63, 383 (1994).

    Google Scholar 

  3. The Application of Ferroelectric Polymers, Ed. by T. T. Wang, J. M. Herbert, and A. M. Glass (Blackie, Glasgow, 1988).

    Google Scholar 

  4. T. Furukawa, IEEE Trans. Electr. Insul. 24, 375 (1989).

    Article  Google Scholar 

  5. V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).

    Google Scholar 

  6. E. Fukada and T. Furukawa, Ultrasonics, No. 1, 31 (1981).

  7. V. V. Kochervinskii, Usp. Khim. 68, 904 (1999).

    Google Scholar 

  8. T. Yamada, J. Appl. Phys. 53, 6335 (1982).

    ADS  Google Scholar 

  9. M. G. Broadhurst and G. T. Davies, in Electrets, Ed. by G. M. Sessler (Springer, Berlin, 1980; Mir, Moscow, 1983).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 4th ed. (Pergamon, New York, 1984; Nauka, Moscow, 1992).

    Google Scholar 

  11. K. Tashiro, H. Tadokoro, and M. Kobayashi, Ferroelectrics 32, 167 (1981).

    Google Scholar 

  12. K. Tashiro, H. Tadokoro, M. Kobayashi, and E. Fukada, Macromolecules 13, 691 (1980).

    Google Scholar 

  13. H. Dvey-Aharon, T. J. Sluckin, and P. L. Taylor, Ferroelectrics 32, 25 (1981).

    Google Scholar 

  14. M. G. Broadhurst and G. T. Davies, Ferroelectrics 60, 3 (1984).

    Google Scholar 

  15. H. Scheve, in IEEE 1982 Ultrasonics Symposium Proceedings (1982), Vol. 1, p. 519.

    Google Scholar 

  16. R. G. Kepler and R. A. Anderson, J. Appl. Phys. 49, 4918 (1978).

    ADS  Google Scholar 

  17. T. Furukawa, J. Aiba, and E. Fukada, J. Appl. Phys. 50, 3615 (1979).

    ADS  Google Scholar 

  18. S. Tasaka and S. Miyata, Ferroelectrics 32, 17 (1981).

    Google Scholar 

  19. H. Ohigashi, J. Appl. Phys. 47, 949 (1976).

    Article  ADS  Google Scholar 

  20. H. Sussner, Phys. Lett. A 58, 426 (1976).

    Article  ADS  Google Scholar 

  21. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971).

    Google Scholar 

  22. E. Bellet-Amalric and J. F. Legrand, Eur. Phys. J. B 3, 225 (1998).

    Article  ADS  Google Scholar 

  23. K. Nakamura and Y. Wada, J. Polym. Sci. A2 9, 161 (1971).

    Article  Google Scholar 

  24. M. Oshiki and E. Fukada, J. Mater. Sci. 10, 1 (1975).

    Article  Google Scholar 

  25. S. Ikeda, H. Suzuki, and I. Maruyoshi, Rep. Prog. Polym. Phys. Jpn. 31, 387 (1988).

    Google Scholar 

  26. T. Watanabe, E. Uamaguchi, H. Suzuki, and S. Ikeda, Kobunshi Ronbunshu 49, 585 (1992).

    Google Scholar 

  27. S. Tasaka and S. Miyata, Kobunshi Ronbunshu 36, 689 (1979).

    Google Scholar 

  28. T. Furukawa and N. Seo, Jpn. J. Appl. Phys. 29, 675 (1990).

    Article  ADS  Google Scholar 

  29. G. Kloos, J. Polym. Sci., Part B: Polym. Phys. 34, 683 (1996).

    Article  Google Scholar 

  30. M. Zhenyi, J. I. Schenbeim, J. W. Lee, and B. A. Newman, J. Polym. Sci., Part B: Polym. Phys. 32, 2721 (1994).

    Article  Google Scholar 

  31. X.-Z. Zhao, V. Bharti, O. M. Zhang, et al., Appl. Phys. Lett. 73(14), 2054 (1998).

    ADS  Google Scholar 

  32. V. Bharti, Z.-Y. Cheng, T.-B. Xu, and O. M. Zhang, Appl. Phys. Lett. 75(17), 2653 (1999).

    Article  ADS  Google Scholar 

  33. M. G. Broadhurst, G. T. Davis, J. E. McKinney, and R. E. Collins, J. Appl. Phys. 49, 4992 (1978).

    Article  ADS  Google Scholar 

  34. G. H. Michler, J. Macromol. Sci., Phys. B 38, 787 (1999).

    Google Scholar 

  35. H. Zhou and G. L. Wilkes, J. Mater. Sci. 33(2), 287 (1998).

    Article  Google Scholar 

  36. V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 31(12), 2590 (1989).

    Google Scholar 

  37. V. V. Kochervinskii, V. A. Glukhov, V. F. Romadin, et al., Vysokomol. Soedin., Ser. A 30(9), 1916 (1988).

    Google Scholar 

  38. V. V. Kochervinskii, V. A. Glukhov, and S. Yu. Kuznetsova, Vysokomol. Soedin., Ser. A 29(7), 1530 (1987).

    Google Scholar 

  39. V. V. Kochervinskii, Vysokomol. Soedin. 45 (2003) (in press).

  40. V. V. Kochervinskii, T. E. Danilyuk, and L. Ya. Madorskaya, Vysokomol. Soedin., Ser. A 28(3), 619 (1986).

    Google Scholar 

  41. K. Eichhom, C. Sinn, and M. Dettenmaier, Appl. Opt. 36(18), 4259 (1997).

    ADS  Google Scholar 

  42. W. Glenz and A. Peterlin, J. Macromol. Sci., Phys. B 4(3), 473 (1970).

    Google Scholar 

  43. P. Spiby, M. A. O'Neil, R. A. Duckett, and I. M. Ward, Polymer 33(21), 4479 (1992).

    Article  Google Scholar 

  44. K. Kober, I. A. Gorshkova, A. V. Savitsky, and A. E. Tshmel, J. Polym. Sci., Part B: Polym. Phys. 36, 2829 (1998).

    Article  Google Scholar 

  45. N. S. Murthy, C. Bednarczuk, P. B. Rim, and C. J. Nelson, J. Appl. Polym. Sci. 64(7), 1363 (1997).

    Article  Google Scholar 

  46. V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 44, 1127 (2002).

    Google Scholar 

  47. R. Schreiber, W. S. Veeman, W. Gabriesle, and J. Arnauts, Macromolecules 32(14), 4647 (1999).

    Article  Google Scholar 

  48. V. I. Vettegren', Fiz. Tverd. Tela (Leningrad) 26, 1699 (1984) [Sov. Phys. Solid State 26, 1030 (1984)].

    Google Scholar 

  49. W.-Y. Yeh and R. J. Young, Polymer 40, 857 (1999).

    Article  Google Scholar 

  50. V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 31(9), 1829 (1989).

    Google Scholar 

  51. S. Tsubakihara and M. Yasuniwa, Polym. J. (Tokyo) 28(7), 563 (1996).

    Google Scholar 

  52. K. Kaji, Makromol. Chem. 175, 311 (1974).

    Article  Google Scholar 

  53. B. H. Hahn, O. Herrmann-Schonherr, and J. H. Wendorff, Polymer 28, 201 (1987).

    Article  Google Scholar 

  54. P. J. Flory, D. J. Yoon, and K. Dill, Macromolecules 17, 862 (1984).

    Article  Google Scholar 

  55. D. J. Yoon and P. J. Flory, Macromolecules 17, 86 (1984).

    Google Scholar 

  56. V. V. Kochervinskii, Vysokomol. Soedin. 42(10), 1669 (2000).

    Google Scholar 

  57. A. Ionas and R. Legras, Macromolecules 26(4), 813 (1993).

    Google Scholar 

  58. G. Teyssedre and C. Lacabanne, Ferroelectrics 171, 125 (1995).

    Google Scholar 

  59. S. Ikeda and T. Watanabe, Rep. Prog. Polym. Phys. Jpn. 32, 335 (1989).

    Google Scholar 

  60. F. Schaffner and B. J. Jungnikel, IEEE Trans. Dielectr. Electr. Insul. 1(4), 553 (1994).

    Article  Google Scholar 

  61. M. G. Broadhurst and G. T. Davies, Ferroelectrics 31, 177 (1981).

    Google Scholar 

  62. K. Tashiro, S. Nishimura, and M. Kobayashi, Macromolecules 23, 2802 (1990).

    Article  Google Scholar 

  63. M.-C. Wu and W. P. Winfee, Ultrason. Symp. Proc., No. 2, 1242 (1989).

  64. W. M. Reid and M. R. Steel, J. Appl. Phys. 51, 1860 (1980).

    Article  ADS  Google Scholar 

  65. B. R. Hahn, J. Appl. Phys. 57, 1294 (1985).

    Article  ADS  Google Scholar 

  66. E. Fukada, M. Date, H. E. Neumann, and J. H. Wendorff, J. Appl. Phys. 63, 1701 (1988).

    Article  ADS  Google Scholar 

  67. M. Date, E. Fukada, and J. H. Wendorff, IEEE Trans. Electr. Insul. 24, 457 (1989).

    Google Scholar 

  68. V. I. Gerasimov and M. V. Ivanov, Vysokomol. Soedin. 38, 1706 (1996).

    Google Scholar 

  69. J. Clements, G. R. Davies, and I. M. Ward, in Proceedings of 2nd International Conference on Electrical, Optical and Acoustical Properties of Polymers, Cantenbury, 1990 (London, 1990).

  70. J. Clements, G. R. Davies, and I. M. Ward, Polymer 26, 208 (1985).

    Article  Google Scholar 

  71. W. N. Chen, H. J. Shaw, D. L. Weinstein, and L. T. Zitelli, in IEEE Ultrasonics Symposium Proceedings (IEEE, New York, 1978), p. 780.

    Google Scholar 

  72. M. Toda, Ferroelectrics 32, 127 (1981).

    Google Scholar 

  73. H. Ohigashi, K. Koga, H. Suzuki, et al., Ferroelectrics 60, 363 (1984).

    Google Scholar 

  74. B. A. Auld and J. J. Gagnepain, J. Appl. Phys. 50, 5511 (1979).

    Article  ADS  Google Scholar 

  75. K. Omate and H. Ohigashi, Appl. Phys. Lett. 66, 2215 (1995).

    ADS  Google Scholar 

  76. E. L. Nix and I. M. Ward, Ferroelectrics 67, 137 (1986).

    Google Scholar 

  77. K. Tashiro, M. Kobayashi, H. Tadokoro, and E. Fukada, Polym. Bull. 2, 397 (1980).

    Article  Google Scholar 

  78. E. Fukada, G. M. Sessler, J. E. West, and P. Gunther, J. Appl. Phys. 62, 3643 (1987).

    Article  ADS  Google Scholar 

  79. G. M. Sessler and A. Berraissoul, IEEE Trans. Electr. Insul. 24, 249 (1989).

    Google Scholar 

  80. H. Kawai, Oyo Butsuri 39, 869 (1970).

    Google Scholar 

  81. H. J. Wintle and R. Diirsam, Phys. Rev. B 39, 3862 (1989).

    Article  ADS  Google Scholar 

  82. N. Murayama, J. Polym. Sci., Polym. Phys. Ed. 13, 929 (1975).

    Google Scholar 

  83. N. Murayama, K. Nakamura, H. Obara, and M. Segawa, Ultrasonics 14, 15 (1976).

    Article  Google Scholar 

  84. G. E. Johnson, L. L. Blyler, G. R. Crane, et al., Ferroelectrics 32, 43 (1981).

    Google Scholar 

  85. G. M. Sessler, D. K. Das-Gupta, A. S. DeReggi, et al., IEEE Trans. Electr. Insul. 27(4), 872 (1992).

    Google Scholar 

  86. W. Eisenmenger, H. Schmidt, and B. Dehlen, Braz. J. Phys. 29(2), 295 (1999).

    Article  Google Scholar 

  87. V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 31, 282 (1989).

    Google Scholar 

  88. J. K. Lee and M. A. Marcus, Ferroelectrics 32, 93 (1981).

    Google Scholar 

  89. M. A. Marcus, Ferroelectrics 57, 203 (1984).

    Google Scholar 

  90. G. E. Johnson, L. L. Blyler, and N. M. Hulton, Ferroelectrics 28, 303 (1980).

    Google Scholar 

  91. A. G. Kolbeck, J. Polym. Sci., Polym. Phys. Ed. 20, 1987 (1982).

    Article  Google Scholar 

  92. V. F. Romadin, V. G. Sokolov, V. V. Kochervinskii, et al., Plast. Massy, No. 6, 21 (1988).

  93. M. Ya. Sherman, O. D. Lesnykh, N. B. Vlader, et al., Plast. Massy, No. 10, 46 (1990).

  94. B. Wunderlich, Macromolecular Physics (Academic, New York, 1980; Mir, Moscow, 1984), Vol. 3.

    Google Scholar 

  95. V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 43(9), 1518 (2001).

    Google Scholar 

  96. K. T. Chang, B. A. Newman, J. I. Scheinbeim, and K. D. Pae, J. Appl. Phys. 52, 6557 (1982).

    ADS  Google Scholar 

  97. K. D. Pae, K. Vijayan, R. W. Renfree, et al., Ferroelectrics 57, 249 (1984).

    Google Scholar 

  98. S. W. Weeks and R. Y. Ting, J. Acoust. Soc. Am. 74, 1681 (1983).

    ADS  Google Scholar 

  99. T. Takemura, Ferroelectrics 57, 243 (1984).

    Google Scholar 

  100. Y. Wada and R. Hayakawa, Ferroelectrics 32, 115 (1981).

    Google Scholar 

  101. V. V. Kochervinskii, Neorg. Mater. 31(6), 851 (1995).

    Google Scholar 

  102. G. S. Smolenskii and A. Agranovskaya, Fiz. Tverd. Tela (Leningrad) 1, 1420 (1960) [Sov. Phys. Solid State 1, 1302 (1960)].

    Google Scholar 

  103. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  104. L. E. Cross, Ferroelectrics 151, 305 (1994).

    Google Scholar 

  105. V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 40, 1636 (1998).

    Google Scholar 

  106. V. V. Kochervinskii, in Abstracts of XV All-Russian Conference on Physics of Ferroelectrics, Rostov-on-Don (1999).

  107. V. Bokov and I. Myl'nikova, Fiz. Tverd. Tela (Leningrad) 3, 3 (1961) [Sov. Phys. Solid State 3, 1 (1961)].

    Google Scholar 

  108. K. A. Verkhovskaya and V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 32, 1669 (1990).

    Google Scholar 

  109. H. Smogor, B. Hilczer, and S. Warchol, Ferroelectrics 258, 291 (2001).

    Google Scholar 

  110. V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 30, 1969 (1988).

    Google Scholar 

  111. V. V. Kochervinskii and E. M. Murasheva, Vysokomol. Soedin., Ser. A 33, 2096 (1991).

    Google Scholar 

  112. K. Uchino and L. Cross, Jpn. J. Appl. Phys. 19, L171 (1980).

    Google Scholar 

  113. S. Nomura and K. Uchino, Ferroelectrics 41, 117 (1982).

    Google Scholar 

  114. R. E. Newnham, V. Sundar, R. Yimnirun, et al., Ceram. Trans. 88, 15 (1998).

    Google Scholar 

  115. A. Kholkin, Ferroelectrics 258, 209 (2001).

    Google Scholar 

  116. V. A. Isupov and M. Boudys, Ferroelectrics 41, 111 (1982).

    Google Scholar 

  117. V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 44, 1925 (2002).

    Google Scholar 

  118. E. V. Colla, E. Yu. Koroleva, A. A. Nabereznov, et al., Ferroelectrics 151, 337 (1994).

    Google Scholar 

  119. F. Chu, I. M. Reaney, and N. Setter, Ferroelectrics 151, 343 (1994).

    Google Scholar 

  120. L. S. Kamzina, Ferroelectrics 253, 69 (2001).

    Google Scholar 

  121. G.-S. Xu, D.-L. Li, H.-S. Luo, et al., Ferroelectrics 253, 39 (2001).

    Google Scholar 

  122. J. M. Xue, J. Wang, D. M. Wan, et al., Ferroelectrics 253, 21 (2001).

    Google Scholar 

  123. Q. M. Zhang, W. Y. Pan, S. J. Jang, and L. E. Cross, J. Appl. Phys. 64, 6445 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 48, No. 4, 2003, pp. 699–726.

Original Russian Text Copyright © 2003 by Kochervinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochervinskii, V.V. Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review). Crystallogr. Rep. 48, 649–675 (2003). https://doi.org/10.1134/1.1595194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1595194

Keywords

Navigation