Original paper

Comparison of a satellite based Alpine cloud climatology with observations of synoptic stations

Kästner, Martina; Bissolli, Peter; Hoppner, Kathrin

Meteorologische Zeitschrift Vol. 13 No. 3 (2004), p. 233 - 243

published: Jul 5, 2004

DOI: 10.1127/0941-2948/2004/0013-0233

BibTeX file

O

Open Access (paper may be downloaded free of charge)

Download paper for free

Abstract

A five-year cloud climatology (1992 to 1996) of the Alpine region in a 15-km resolution has been evaluated by means of the APOLLO cloud detection algorithm applied to daytime AVHRR data of several NOAA satellites. The study area comprises three different climatic regions, the moderate climate north of the Alps, the Alpine climate and the Mediterranean climate in the Po-valley. Synoptic observations of the total cloud cover at 40 stations have been compared to the satellite based monthly mean data. Hourly ground observations allowed to estimate the variance in the monthly mean diurnal cycle of total cloud cover due to the fact that the satellite overpass time shifts from noon to afternoon for the NOAA-11 platform and for different NOAA satellites as well. This time shift of satellite observation effects the cloud climatology only slightly, because the changes of the cloud cover between 11 and 16 UTC are in most cases considerably smaller than the yearto-year variability. Furthermore, these cloud cover variations due to the time of the day are in monthly means below the validation accuracy. The comparison of monthly means reveals an overestimation of the satellite cloud cover of about 10% mainly due to additional detection of thin cirrus. A good agreement is found in the Alpine and rural moderate climates (corr. coeff. r > 0.75), whereas the cloud detection in the satellite data is too high in the Mediterranean zone due to urban and aerosol haze effects. In both data sets a rather small amplitude of the annual cycle of cloud cover results in the mountains compared to the lowlands. The high spatial variability of cloud cover in mountainous terrain is obvious with the satellite data and is substantiated by the sparse synoptic stations within the Alps.