Original paper

Topographic airborne LiDAR in geomorphology: A technological perspective

Höfle, Bernhard; Rutzinger, Martin

Abstract

Airborne LiDAR, also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition with sub-meter planimetric and vertical accuracy. This contribution gives a review of recent developments of LiDAR systems (e.g. full-waveform LiDAR) and advances in data processing and analysis for geomorphological applications. An overview of applications in geomorphology and related fields using different LiDAR data products (e.g. Digital Terrain Model and 3D point cloud) is given, indicating a great variety of fields of applications and data analysis approaches. These applications range from visual interpretation of LiDAR derivatives (e.g. shaded relief map) to semi-automatic geomorphological mapping and fully automatic object detection (e.g. surface discontinuities). A quantitative analysis of the temporal trend of peer-reviewed journal publications confirms the increased consideration of airborne LiDAR data for mapping, modeling and exploiting Earth surface processes and landforms. Almost 50% of the papers of the last 15 years were published in the last two years 2008 and 2009. Airborne LiDAR technology is developing rapidly leading to both a great opportunity and challenge for integrating new technological developments for into existing workflows and stimulating new innovative approaches.

Keywords

airborne lidarairborne laser scanninggeomorphologydtmpoint cloudclassification