Paper
13 May 2010 Simulating systematic scene-change artifacts in Fourier-transform spectroscopy
Author Affiliations +
Abstract
Improved understanding of midwave infrared (1-5μm) spectral emissions from detonation fireballs is needed to develop a battle space optical forensics capability. While Fourier-transform spectrometers (FTS) are an attractive tool, interferometer-based spectroscopic measurements can be corrupted when the observed scene intensity systematically varies during the measurement time. Approximating a detonation fireball as a blackbody radiator with a time-varying temperature T and modified by atmospheric attenuation τ(~ν), double-sided interferograms from an ideal FTS were calculated and converted to measured spectra Lm(~ν) to characterize the nature and magnitude of scene-change artifacts. T(x) decreased exponentially with optical path difference x, -xm ≤ x ≤ xm, at various rates relative to the Michelson mirror speed so that changing scene spectra could be simulated on 1700 ≤ ~ν ≤ 7900cm-1 at δ ~ν = 3.64cm-1 resolution (xm = 0.25cm, Hamming apodization). The real part of Lm(~ν), Re{Lm(~ν)}, is well approximated by the instantaneous spectrum at zero path difference, L(~ν,x = 0). In regions where τ(~ν) is highly structured, both the imaginary component Im{Lm(~ν)} and the differences between Re{Lm(~ν)} and L(~ν,0) exhibit spectral features, and in general |Im{Lm(~ν)}|>>|Re{Lm(~ν)}-L(~ν,0)|. In a region of highly structured absorption, 2800 ≤~ν ≤ 3500cm-1, a 600K decrease in temperature produced RMS values of 62 and 5μW/(cm2 • sr •cm-1) in Im{Lm(~ν)} and Re{Lm( ~ν)-L(~ν,0)}, respectively, compared with an RMS value of 1924μW/ (cm2 • sr • cm-1) in Re{Lm(~ν)}. A method based on theoretical expressions developed by Kick et al. is devised to interpret Lm(~ν) and provide estimates of the temporal evolution T(x) when its functional formis not known a priori.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kevin C. Gross, Anthony M. Young, Christoph Borel, Bryan J. Steward, and Glen P. Perram "Simulating systematic scene-change artifacts in Fourier-transform spectroscopy", Proc. SPIE 7695, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, 76951Y (13 May 2010); https://doi.org/10.1117/12.849128
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fourier transforms

Temperature metrology

Spectroscopy

Interferometry

Absorption

Interferometers

Apodization

Back to Top