The effects of source field plates on AlGaN/GaN high electron mobility transistor reliability under off-state stress conditions were investigated using step-stress cycling. The source field plate enhanced the drain breakdown voltage from 55 to 155 V and the critical voltage for off-state gate stress from 40 to 65 V, relative to devices without the field plate. Transmission electron microscopy was used to examine the degradation of the gate contacts. The presence of pits that appeared on both source and drain sides of the gate edges was attributed to the inverse piezoelectric effect. In addition, a thin oxide layer was observed between the Ni gate contact and the AlGaN layer, and both Ni and oxygen had diffused into the AlGaN layer. After step-stress cycling, additional threading dislocations were observed.

1.
G.
Meneghesso
,
G.
Verzellesi
,
F.
Danesin
,
F.
Rampazzo
,
F.
Zanon
, and
A.
Tazzoli
,
IEEE Trans. Device Mater. Reliab.
8
,
332
(
2008
).
2.
J.
Joh
,
J. A.
del Alamo
, and
J.
Jimenez
,
IEEE Electron Device Lett.
29
,
665
(
2008
).
3.
P.
Makaram
,
J.
Joh
,
J. A.
del Alamo
,
T.
Palacios
, and
C. V.
Thompson
,
Appl. Phys. Lett.
96
,
233509
(
2010
).
4.
U.
Chowdhury
 et al,
IEEE Electron Device Lett.
29
,
1098
(
2008
).
5.
J.
Joh
and
J. A.
del Alamo
,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
415
.
6.
P.
Saunier
 et al,
Proceedings on Device Research Conference
,
2007
(unpublished), p.
35
.
7.
J. A.
del Alamo
and
J.
Joh
,
Microelectron. Reliab.
49
,
1200
(
2009
).
8.
E.
Zanoni
,
G.
Meneghesso
,
G.
Verzellesi
,
F.
Danesin
,
M.
Meneghini
,
F.
Rampazzo
,
A.
Tazzoli
, and
F.
Zanon
,
Tech. Dig. - Int. Electron Devices Meet.
2007
,
381
.
9.
M.
Faqir
,
G.
Verzellesi
,
G.
Meneghesso
,
E.
Zanoni
, and
F.
Fantini
,
IEEE Trans. Electron Devices
55
,
1592
(
2008
).
10.
G.
Meneghesso
,
F.
Rampazzo
,
P.
Kordoš
,
G.
Verzellesi
, and
E.
Zanoni
,
IEEE Trans. Electron Devices
53
,
2932
(
2006
).
11.
S.
Singhal
,
J. C.
Roberts
,
P.
Rajagopal
,
T.
Li
,
A. W.
Hansen
,
R.
Therrien
,
J. W.
Johnson
,
I. C.
Kizilyalli
, and
K. J.
Linthicum
,
Proceedings of the IEEE International Reliability Physics Symposium
,
2006
(unpublished), p.
95
.
12.
C. Y.
Chang
 et al,
J. Vac. Sci. Technol. B
28
,
1044
(
2010
).
13.
E.
Piner
 et al,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
411
.
14.
V.
Kumar
,
G.
Chen
,
S.
Guo
, and
I.
Adesida
,
IEEE Trans. Electron Devices
53
,
1477
(
2006
).
15.
Y.
Hori
,
M.
Kuzuhara
,
Y.
Ando
, and
M.
Mizuta
,
J. Appl. Phys.
87
,
3483
(
2000
).
16.
S.
Karmalkar
,
M. S.
Shur
,
G.
Simin
, and
M. A.
Khan
,
IEEE Trans. Electron Devices
52
,
2534
(
2005
).
17.
W.
Saito
,
Y.
Takada
,
M.
Kuraguchi
,
K.
Tsuda
,
I.
Omura
, and
T.
Ogura
,
Jpn. J. Appl. Phys., Part 1
43
,
2239
(
2004
).
18.
P.
Rajagopal
,
T.
Gehrke
,
J. C.
Roberts
,
J. D.
Brown
,
T. W.
Weeks
,
E. L.
Piner
, and
K. J.
Linthicum
,
Mater. Res. Soc. Symp. Proc.
743
,
3
(
2003
).
19.
W.
Weeks
,
E.
Piner
,
T.
Gehrke
, and
K.
Linthicum
, U.S. Patent 6, 617, 060 (9 September
2003
);
U.S. Patent 6, 649, 287 (18 November
2003
).
20.
N. A.
Moser
 et al,
Appl. Phys. Lett.
83
,
4178
(
2003
).
You do not currently have access to this content.