Skip to main content
Log in

Comparison of Orthogonal Search and Canonical Variate Analysis for the Identification of Neurobiological Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper, we investigate two general methods of modeling and prediction which have been applied to neurobiological systems, the orthogonal search (OS) method and the canonical variate analysis (CVA) approach. In these methods, nonlinear autoregressive moving average with observed inputs (ARX) and state affine models are developed as one step predictors by minimizing the mean-squared-error. An unknown nonlinear time-invariant system is assumed to have the Markov property of finite order so that the one step predictors are finite dimensional. No special assumptions are made about model terms, model order or state dimensions. Three examples are presented. The first is a numerical example which demonstrates the differences between the two methods, while the last two examples are computer simulations for a bilinear system and the Lorenz attractor which can serve as a model for the EEG. These two methods produce comparable results in terms of minimizing the mean-square-error; however, the OS method produces an ARX model with fewer terms, while the CVA method produces a state model with fewer state dimensions. © 1999 Biomedical Engineering Society.

PAC99: 8719La, 8719Nn, 8718Bb, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akaike, H. Canonical Correlation Analysis of Time Series and the Use of an Information Criterion. System Identification: Advances and Case Studies, edited by R. K. Mehra and D. G. Lainiotis. New York: Academic, 1976.

    Google Scholar 

  2. Bodenstein, G., and M. H. Praetorius. Feature extraction from the electroencephalogram by adaptive segmentation. Proc. IEEE 65:642–652, 1977.

    Google Scholar 

  3. Bohlin, T. Analysis of EEG signals with changing spectra using a short-word Kalman estimator. Math. Biosci. 35:221–259, 1977.

    Google Scholar 

  4. Brenner, R., R. J. Sclabassi, D. G. Spiker, R. Ulrich, C. F. Reynolds, F. Boller, P. Lordeon, R. Marin, and S. Pearlman. Computerized spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 64:483–492, 1986.

    Google Scholar 

  5. Diaz, H. Modeling of Nonlinear Systems from Input-Output Data. Troy, NY: Electrical, Computer, and Systems Engineering Department, Rensselaer Polytechnic Institute, PhD Thesis, 1986.

    Google Scholar 

  6. Fliess, M., and D. Normand-Cyrot. On the approximation of nonlinear systems by some simple state-space model. Identi-fication and system parameter estimation. In: Sixth IFAC Symposium, edited by G. A. Bekey. Washington, DC, 1982, Vol. 1, pp. 433–436.

  7. Gersch, W. Spectral analysis of EEGs by autoregression decomposition of time series. Math. Biosci. 7:205–222, 1970.

    Google Scholar 

  8. Isaksson, A., and A. Wennberg. Spectral properties of nonstationary EEG signals, evaluated by means of Kalman filtering: Application examples from a vigilance test. In: Quantitative Analysis Studies in Epilepsy, edited by P. Kellaway and I. Petersen. New York: Raven, 1976.

    Google Scholar 

  9. Isaksson, A., A. Wennberg, and L. H. Zetterberg Computer analysis of EEG signals with parametric models. Proc. IEEE 69:451–461, 1981.

    Google Scholar 

  10. Korenberg, M. J. Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm. Ann. Biomed. Eng. 16:123–142, 1988.

    Google Scholar 

  11. Korenberg, M. J., S. B. Bruder, and P. J. H. McIlroy. Exact orthogonal kernel estimation from finite data records: Expanding Wiener's identification of nonlinear systems. Ann. Biomed. Eng. 16:201–214, 1988.

    Google Scholar 

  12. Korenberg, M. J., and L. D. Paarmann. An orthogonal ARMA identifier with automatic order estimation for biological modeling. Ann. Biomed. Eng. 17:571–592, 1989.

    Google Scholar 

  13. Korenberg, M. J. A robust orthogonal algorithm for system identification and time-series analysis. Biol. Cybern. 60:267–276, 1989.

    Google Scholar 

  14. Korenberg, M. J., and L. D. Paarmann. Orthogonal approach to time-series analysis and system identification. IEEE Signal Process. Mag. 8:29–43, 1991.

    Google Scholar 

  15. Krieger, D. R., R. Nakamura, R. Coppola, and R. J. Sclabassi. Resonant neuroelectric patterns evoked by a cognitive task. In: IEEE Conf. Decision Control. New York: IEEE, 1990, Vol. 1, pp. 629–634.

    Google Scholar 

  16. Krieger, D. R., R. J. Sclabassi, R. Cappola, and R. Nakamura. Spatiotemporal cortical patterns evoked in monkeys by a discrimination task. J. Cognitive Neurosci. 3:242–251, 1991.

    Google Scholar 

  17. Larimore, W. E. System identification, reduced-order filtering and modeling via canonical variate analysis. In: Proceedings of the 1983 IEEE American Control Conference, edited by H. S. Rao and T. Dorato. New York: IEEE, 1983, Vol. 1, pp. 445–51.

    Google Scholar 

  18. Larimore, W. E. Order-recursive factorization of the pseudoinverse of a covariance matrix. IEEE Trans. Autom. Control. 35:1299–1303, 1990.

    Google Scholar 

  19. Larimore, W. E. Identification of nonlinear system using canonical variate analysis. In: 29th IEEE Conf. Decision Control. New York: IEEE, 1987, Vol. 3, pp. 1694–1699.

    Google Scholar 

  20. Larimore, W. E. Generalized canonical variate analysis of nonlinear systems. In: 27th IEEE Conf. Decision Control. New York: IEEE, 1988, Vol. 2, 1720–1725.

    Google Scholar 

  21. Larimore, W. E. Canonical variate analysis in identification, filtering, and adaptive control. In: 29th IEEE Conf. on Decision Control. New York: IEEE, 1990, Vol. 1, pp. 596–604.

    Google Scholar 

  22. Larimore, W. E., S. Mahmood, and R. K. Mehra, Multivariable adaptive model algorithmic control. In: Proceedings of the Conference on Decision and Control, edited by A. H. Haddad and M. Polis. New York: IEEE, 1984, Vol. 2, pp. 675–680.

    Google Scholar 

  23. Larimore, W. E. Identification and filtering of nonlinear systems using canonical variate analysis, nonlinear modeling and forecasting. In: SFI Studies in the Sciences of Complexity, edited by M. Casdagli and S. Eubank. Reading, MA: Addison-Wesley, 1992, Vol. XII, pp. 283–303.

    Google Scholar 

  24. Larimore, W. E. Optimal reduced bank modeling, prediction, monitoring, and control using canonical variate analysis. In: Preprints IFAC Advanced Control of Chemical Processes, Banff, Alberta, Canada, 1997, pp. 61–66.

    Google Scholar 

  25. Lieb, J., R. J. Sclabassi, P. Crandell, and R. Buchness. Comparison of the action of diazepam and phenobarbital using EEG derived power spectra obtained from temporal lobe epileptics. Neuropharmacology 13:769–783, 1974.

    Google Scholar 

  26. Lopes da Silva, F. H. Analysis of EEG Nonstationarities. In: Contemporary Clinical Neurophysiology (EEG Suppl. No. 34), edited by W. A. Cobb and H. Van Duijn. Amsterdam: Elsevier, 1978.

    Google Scholar 

  27. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20:130–141, 1963.

    Google Scholar 

  28. Rogowski, Z., I. Gath, and E. Bental. On the prediction of epileptic seizures. Biol. Cybern. 42:9–15, 1981.

    Google Scholar 

  29. Scher, M. S., S. G. Dokianakis, M. Sun, D. A. Steppe, R. D. Guthrie, and R. J. Sclabassi. Computer classification of sleep in preterm and fullterm neonates at similar postconceptional term ages. Sleep 1996:18–25.

  30. Sclabassi, R. J., M. Sun, D. N. Krieger, P. Jasiukities, and M. Scher. Time-frequency domain problems in the neurosciences. In: Time-Frequency Signal Analysis, edited by B. Boashash. New York: Wiley, 1992, pp. 498–519.

    Google Scholar 

  31. Thormundsson, T., J. R. Sveinsson, and J. A. Benediktsson. Cancellation of nonlinear intersymbol interference in voiceband communication channels. In: Proceedings of the IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing. New York: IEEE, 1997, pp. 862–865.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YT., Sun, M., Krieger, D. et al. Comparison of Orthogonal Search and Canonical Variate Analysis for the Identification of Neurobiological Systems. Annals of Biomedical Engineering 27, 592–606 (1999). https://doi.org/10.1114/1.213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.213

Navigation