Skip to main content

Advertisement

Log in

Quantification of the Contribution of Type 1 and Type 2 Angiotensin II Receptors to the Net Tissue Specific Effect of Angiotensin II

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerous studies have demonstrated changes in receptor number, protein concentration, or mRNA levels and have proposed that these subcellular changes produce physiologic effects. To date, no adequate mathematical analysis has been available to provide a framework for interpretation of such data. In the present study we have combined measurements of angiotensin receptor protein levels with the development of a mathematical model that includes two receptors with opposing actions for a single ligand. This model was used to quantify the net, physiologic response of each receptor population to ANG II stimulation and the effect of altering the expression of receptor populations by a physiologic stimulus. Altered sodium intake was used as the physiologic stimulus and quantification of Western blot analysis and revealed that high sodium diet significantly suppressed AT1 receptor protein in the adrenal gland and aorta and augmented AT2 receptor protein in the aorta. A high sodium diet did not significantly alter AT2 receptor protein in the adrenal gland. Modeling the measured sodium-induced changes in receptor concentration demonstrated that small, subcellular changes in receptor concentration can have a large impact on the net physiologic effect. This model for dual receptor–single ligand interactions should be amenable for other systems. © 2000 Biomedical Engineering Society.

PAC00: 8710+e, 8714Ee

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aguilera, G., A. Schirar, A. Baukal, and K. J. Catt. Angiotensin II Receptors: Properties and regulation in adrenal glomerulosa cells. Circ.Res. 46:I118–I127, 1980.

    Google Scholar 

  2. Bowman, W. C., and M. J. Rand. Textbook of Pharmacology, 2nd ed., Blackwell Scientific, 1980: 13–39.43.

  3. Dahlof, B.. Effect of angiotensin II blockade on cardiac hy-pertrophy and remodeling: a review. J.Hum.Hypertens. 9:S37–S44, 1995.

    Google Scholar 

  4. Dudley, D. T., S. E. Hubbell, and R. M. Summerfelt. Characterization of angiotensin II (AT2) binding sites in R3T3 cells. Mol.Pharmacol. 40:360–367, 1991.

    Google Scholar 

  5. Ferrario, C. M., and J. M. Flack. Pathologic consequences of increased angiotensin II activity. Cardiovasc.Drugs Therapy 10:511–518, 1996.

    Google Scholar 

  6. Fyhrquist, F., K. Metsarinne, and I. Tikkanen. Role of angio-tensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J.Hum.Hypertens. 9:S19–S24, 1995.

    Google Scholar 

  7. Garg, R., and S. Yusuf. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. J.Am.Med.Assoc. 273:1450–1456, 1995.

    Google Scholar 

  8. Griffin, S., W. Brown, F. MacPherson, J. McGrath, V. Wilson, N. Korsgaard, M. Mulvany, and A. Lever. Angiotensin II causes vascular hypertrophy in part by non-pressor mechanism. Hypertension (Dallas) 17:626–635, 1991.

    Google Scholar 

  9. Hernandez, I., A. W. Cowley, Jr., J. H. Lombard, and A. S. Greene. Salt intake and angiotensin II alter microvessel density in the cremaster muscle of normal rats. Am.J.Physiol. 263:H664–H667, 1992.

    Google Scholar 

  10. Ichiki, T., P. A. Labosky, C. Shiota, S. Okuyama, Y. Imagawa, A. Fogo, F. Niimura, I. Ichikawa, B. L. M. Hogan, and T. Inagami. Effects on blood pressure and exploratory behav-ior of mice lacking angiotensin II type 2 receptor. Nature (London) 377:748–750, 1995.

    Google Scholar 

  11. Ito, M., M. I. Oliverio, P. J. Mannon, C. F. Best, M. Maeda, O. Smithies, and T. M. Coffman. Regulation of blood pres-sure by the type 1A angiotensin II receptor gene. Proc.Natl.Acad.Sci.USA 92:3521–3525, 1995.

    Google Scholar 

  12. Iwai, N., and T. Inagami. Regulation of the expression of the rat angiotensin II receptor mRNA. Biochem.Biophys.Res.Commun. 182:1094–1099, 1992.

    Google Scholar 

  13. Kitami, Y., T. Okura, K. Marumoto, R. Wakamiya, and K. Hiwada. Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat. Biochem.Biophys.Res.Commun. 188:446–452, 1992.

    Google Scholar 

  14. Kwok, Y. C., and G. J. Moore. Photoaffinity labeling of the rat isolated portal vein: Determination of affinity constants and “spare” receptors for angiotensin II and III. J.Pharma-col.Exp.Ther. 231:137–140, 1984.

    Google Scholar 

  15. Kwok, Y. C., and G. J. Moore. Comparison of angiotensin receptors in isolated smooth muscle tissues by photoaffinity labeling. Eur.J.Pharmacol. 115:53–58, 1985.

    Google Scholar 

  16. Lauffenburger, D. A., and J. J. Linderman. Receptors: Models for Binding, Trafficking, and Signaling, London: Oxford University, 1993: 13–43, 247–251.

    Google Scholar 

  17. Llorens-Cortez, C., B. Greenberg, H. Huang, and P. Corvol. Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Hypertension (Dallas) 24:538–548, 1994.

    Google Scholar 

  18. Munzenmaier, D. H., and A. S. Greene. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension (Dallas) 27:760–765, 1996.

    Google Scholar 

  19. Nora, E. H., D. H. Munzenmaier, and A. S. Greene. Regulation of angiotensin II receptors in cremasteric microvessels by sodium intake. FASEB J. 10:A58, 1996.

    Google Scholar 

  20. Nora, E. H., D. H. Munzenmaier, F. M. Hansen-Smith, J. H. Lombard, and A. S. Greene. Localization of the angiotensin II type 2 receptor in the microcirculation of skeletal muscle. Am.J.Physiol. 275:H1395–H1403, 1998.

    Google Scholar 

  21. Ozono, R., Z. Wang, A. F. Moore, T. Inagami, H. M. Siragy, and R. M. Carey. Expression of the subtype 2 angiotensin (AT 2 ) receptor protein in rat kidney. Hypertension (Dallas) 30:1238–1246, 1997.

    Google Scholar 

  22. Pernollet, M.-G., M. A. Devynck, P. G. Matthews, and P. Meyer. Post-nephrectomy changes in adrenal angiotensin II receptors in the rat: Influence of exogenous angiotensin and a competitive inhibitor. Eur.J.Pharmaco. 43:361–372, 1977.

    Google Scholar 

  23. Raizada, M. K., M. I. Phillips, and C. Sumners. Cellular and Molecular Biology of the Renin-Angiotensin System. Boca Raton: CRC, 1993.

    Google Scholar 

  24. Rakugi, H., D. Wang, V. Dzau, and R. Pratt, Potential importance of tissue angiotensin-converting enzyme inhibition preventing neointima formation. Circulation 90:449–455, 1994.

    Google Scholar 

  25. Rieder, M. J., R. J. Roman, and A. S. Greene. Reversal of microvascular rarefaction and reduced renal mass hyperten-sion. Hypertension (Dallas) 30:120–127, 1997.

    Google Scholar 

  26. Riordan, J. F. Angiotensin II: Biosynthesis, molecular recog-nition, and signal transduction. Cell.Mol.Neurobiol. 15:637–651, 1995.

    Google Scholar 

  27. Sabri, A., B. I. Levy, P. Poitevin, L. Caputo, E. Faggin, F. Marotte, L. Rappaport, and J. L. Samuel. Differential roles of the AT 1 and AT 2 receptor subtypes in vascular trophic and phenotypic changes in response to stimulation with angio-tensin II. Arterioscler.Thromb.Vasc.Biol. 17:257–264, 1997.

    Google Scholar 

  28. Scheuer, D. A., and M. H. Perrone. Angiotensin type 2 receptors mediate the depressor phase of biphasic pressure response to angiotensin. Am.J.Physiol. 264:R917–R923, 1993.

    Google Scholar 

  29. Stoll, M., U. M. Steckelings, M. Paul, S. P. Bottari, R. Metzger, and T. Unger. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J.Clin.Invest. 95:651–657, 1995.

    Google Scholar 

  30. Unger, T., O. Chung, T. Csikos, J. Culman, S. Gallinat, P. Gohlke, S. Hohle, S. Meffert, M. Stoll, U. Stroth, and Y. Zhu. Angiotensin receptors. J.Hypertens. 14:S95–S103, 1996.

    Google Scholar 

  31. Viswanathan, M., M. K. Tsutsumi, F. M. A. Correa, and J. M. Saavedra. Changes in the expression of angiotensin re-ceptor subtypes in the rat aorta during development. Bio-chem.Biophys.Res.Commun. 179:1361–1367, 1991.

    Google Scholar 

  32. Wang, D. H., and R. L. Prewitt. Longitudinal effect of captopril on aortic and arteriolar development in normotensive animals. Am.J.Physiol. 260:H1959–H1965, 1991.

    Google Scholar 

  33. Weber, D. S., J. C. Frisbee, and J. H. Lombard. Selective potentiation of angiotensin-induced constriction of skeletal muscle resistance arteries by chronic elevations in dietary salt intake. Microvasc.Res. 57:310–319, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nora, E.H., Tonellato, P.J. & Greene, A.S. Quantification of the Contribution of Type 1 and Type 2 Angiotensin II Receptors to the Net Tissue Specific Effect of Angiotensin II. Annals of Biomedical Engineering 28, 653–664 (2000). https://doi.org/10.1114/1.1305911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1305911

Navigation