Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66(5), 1141-1150 | DOI: 10.11118/actaun201866051141

Estimating Crop Yields at the Field Level Using Landsat and MODIS Products

František Jurečka1,2, Vojtěch Lukas1,2, Petr Hlavinka2, Daniela Semerádová1,2, Zdeněk Žalud1,2, Miroslav Trnka2
1 Department of Agrosystems and Bioclimatology, Mendel University in Brno, Brno, Czech Republic
2 Global Change Research Institute, Academy of Sciences of the Czech Republic, v.v.i, Bělidla 986/4a, 603 00 Brno, Czech Republic

Remote sensing can be used for yield estimation prior to harvest at the field level to provide helpful information for agricultural decision making. This study was undertaken in Polkovice, located at low elevations in the Czech Republic. From 2014-2016, two datasets of satellite imagery were used: the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 datasets. Satellite data were compared with yields and other observations at the level of land blocks. Winter oilseed rape, winter wheat and spring barley yield data, representing the crops planted over the analyzed period, were used for comparison. In 2016, a more detailed analysis was conducted. We tested a relationship between remote sensing data and the spatial yield variability measured by a yield monitor from a combine harvester. Correlations varied from approximately r = 0.4 to r = 0.7 with the highest correlation (r = 0.74) between yield and the Green Normalized Difference Vegetation Index collected from a drone. Vegetation indices from both Landsat 8 and the MODIS showed a positive relationship with yields for the compared period. The highest correlation was between yield and the Enhanced Vegetation Index (r = 0.8) while the lowest was between yield and the Normalized Difference Vegetation Index from MODIS (r = 0.1).

Keywords: crop yield, vegetation indices, remote sensing, satellites, unmanned aerial vehicles, yield estimation
Grants and funding:

FJ, PH and MT were supported by the project SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). This work was also conducted at Mendel University in Brno as a part of the project IGA AF MENDELU no. IP 14/2016 with the support of the Specific University Research Grant, provided by the Ministry of Education, Youth and Sports of the Czech Republic in 2016.

Published: October 29, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Jurečka, F., Lukas, V., Hlavinka, P., Semerádová, D., Žalud, Z., & Trnka, M. (2018). Estimating Crop Yields at the Field Level Using Landsat and MODIS Products. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis66(5), 1141-1150. doi: 10.11118/actaun201866051141
Download citation

References

  1. ANDERSON, M. C., NORMAN, J. M., MECIKALSKI, J. R., OTKIN, J. A. and KUSTAS, W. P. 2007. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. Journal of Geophysical Research, 112(D11): D11112 DOI: 10.1029/2006JD007507 Go to original source...
  2. ANDERSON, M. C., HAIN, C., WARDLOW, B., PIMSTEIN, A., MECIKALSKI, J. R. and KUSTAS, W. P. 2011. Evaluation of drought indices based on Thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate, 24(8): 2025-2044. DOI: 10.1175/2010JCLI3812.1 Go to original source...
  3. ANDERSON, M. C., HAIN, C., OTKIN, J., ZHAN, X., MO, K., SVOBODA, M. et al. 2013. An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U. S. Drought Monitor Classifications. Journal of Hydrometeorology, 14(4): 1035-1056. DOI: 10.1175/JHM-D-12-0140.1 Go to original source...
  4. ANDERSON, M. C., ZOLIN, C. A., HAIN, C. R., SEMMENS, K., TUGRUL YILMAZ, M. and GAO, F. 2015. Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013. Journal of Hydrology, 526: 287-302. DOI: 10.1016/j.jhydrol.2015.01.005 Go to original source...
  5. ANDERSON, M., HAIN, C., JURECKA, F., TRNKA, M., HLAVINKA, P., DULANEY, W. et al. 2016. Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic. Climate Research, 70(2): 215-230. DOI: 10.3354/cr01411 Go to original source...
  6. BECKER-RESHEF, I., VERMOTE, E., LINDEMAN, M. and JUSTICE, C. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6): 1312-1323. DOI: 10.1016/j.rse.2010.01.010 Go to original source...
  7. BENDIG, J., BOLTEN, A., BENNERTZ, S., BROSCHEIT, J., EICHFUSS, S. and BARETH, G. 2014. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sensing, 6(11): 10395-10412. DOI: 10.3390/rs61110395 Go to original source...
  8. BOEGH, E., SOEGAARD, H., BROGE, N., SCHELDE, K., THOMSEN, A., HASAGER, C. and JENSEN, N. 2002. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81(2-3): 179-193. DOI: 10.1016/S0034-4257(01)00342-X Go to original source...
  9. BRANKATSCHK, G. and FINKBEINER, M. 2014. Application of the Cereal Unit in a new allocation procedure for agricultural life cycle assessments. Journal of Cleaner Production, 73: 72-79. DOI: 10.1016/j.jclepro.2014.02.005 Go to original source...
  10. CANDIAGO, S., REMONDINO, F., DE GIGLIO, M., DUBBINI, M. and GATTELLI, M. 2015. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sensing, 7(4): 4026-4047. DOI: 10.3390/rs70404026 Go to original source...
  11. DORAISWAMY, P. C., SINCLAIR, T. R., HOLLINGER, S., AKHMEDOV, B., STERN, A. and PRUEGER, J. 2005. Application of MODIS derived parameters for regional crop yield assessment. Remote Sensing of Environment, 97(2): 192-202. DOI: 10.1016/j.rse.2005.03.015 Go to original source...
  12. ESQUERDO, J. C. D. M., ZULLO JÚNIOR, J. and ANTUNES, J. F. G. 2011. Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. International Journal of Remote Sensing, 32(13): 3711-3727. DOI: 10.1080/01431161003764112 Go to original source...
  13. FANG, H. L. and LIANG, S. L. 2003. Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Transactions on Geoscience and Remote Sensing, 41(9): 2052-2062. DOI: 10.1109/TGRS.2003.813493 Go to original source...
  14. FENSHOLT, R., SANDHOLT, I. and STISEN, S. 2006. Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. IEEE Transactions on Geoscience and Remote Sensing, 44(7): 1774-1786. DOI: 10.1109/TGRS.2006.875940 Go to original source...
  15. GEIPEL, J., LINK, J. and CLAUPEIN, W. 2014. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sensing, 6(11): 10335-10355. DOI: 10.3390/rs61110335 Go to original source...
  16. GITELSON, A. A. and MERZLYAK, M. N. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22(5): 689-692. DOI: 10.1016/S0273-1177(97)01133-2 Go to original source...
  17. GÓMEZ-CANDÓN, D., DE CASTRO, A. I. and LÓPEZ-GRANADOS, F. 2014. Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture, 15(1): 44-56. DOI: 10.1007/s11119-013-9335-4 Go to original source...
  18. HAGHIGHATTALAB, A., GONZÁLEZ PÉREZ, L., MONDAL, S., SINGH, D., SCHINSTOCK, D., RUTKOSKI, J. et al. 2016. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods, 12(1): 35. DOI: 10.1186/s13007-016-0134-6 Go to original source...
  19. HAIN, C. R. and ANDERSON, M. C. 2017. Estimating morning change in land surface temperature from MODIS day/night observations: Applications for surface energy balance modeling. Geophysical Research Letters, 44(19): 9723-9733. DOI: 10.1002/2017GL074952 Go to original source...
  20. HLAVINKA, P., TRNKA, M., SEMERÁDOVÁ, D., DUBROVSKÝ, M., ŽALUD, Z. and MOŽNÝ, M. 2009. Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology, 149(3-4): 431-442. DOI: 10.1016/j.agrformet.2008.09.004 Go to original source...
  21. HUETE, A., DIDAN, K., MIURA, H., RODRIGUEZ, E. P., GAO, X. and FERREIRA, L. F. 2002. Overview of the radiometric and biopyhsical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83: 195-213. DOI: 10.1016/S0034-4257(02)00096-2 Go to original source...
  22. HUETE, A. R., DIDAN, K., SHIMABUKURO, Y. E., RATANA, P., SALESKA, S. R., HUTYRA, L. R. et al. 2006. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 33(6): 2-5. DOI: 10.1029/2005GL025583 Go to original source...
  23. IRONS, J. R., DWYER, J. L. and BARSI, J. A. 2012. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122: 11-21. DOI: 10.1016/j.rse.2011.08.026 Go to original source...
  24. JIANG, Z., HUETE, A. R., DIDAN, K. and MIURA, T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10): 3833-3845. DOI: 10.1016/j.rse.2008.06.006 Go to original source...
  25. JOHNSON, D. M. 2014. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141: 116-128. DOI: 10.1016/j.rse.2013.10.027 Go to original source...
  26. JOHNSON, D. M. 2016. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. International Journal of Applied Earth Observation and Geoinformation, 52: 65-81. DOI: 10.1016/j.jag.2016.05.010 Go to original source...
  27. QI, J., CHEHBOUNI, A., HUETE, A. R., KERR, Y. H. and SOROOSHIAN, S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2): 119-126. DOI: 10.1016/0034-4257(94)90134-1 Go to original source...
  28. ROUSE, J. W., HASS, R. H., SCHELL, J. A. and DEERING, D. W. 1974. Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS-1 Symposium NASA. NASA SP-351, Washington DC, pp. 309-317.
  29. SANKARAN, S., KHOT, L. R. and CARTER, A. H. 2015. Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Computers and Electronics in Agriculture, 118: 372-379. DOI: 10.1016/j.compag.2015.09.001 Go to original source...
  30. TRNKA, M., BRÁZDIL, R., OLESEN, J. E., EITZINGER, J., ZAHRADNÍČEK, P., KOCMÁNKOVÁ, E. et al. 2012. Could the changes in regional crop yields be a pointer of climatic change? Agricultural and Forest Meteorology, 166-167: 62-71. DOI: 10.1016/j.agrformet.2012.05.020 Go to original source...
  31. TUCKER, C. J., TOWNSHEND, J. R. G. and GOFF, T. E. 1985. African Land-Cover Classification Using Satellite Data. Science, 227(4685): 369-375. DOI: 10.1126/science.227.4685.369 Go to original source...
  32. WARDLOW, B. D., ANDERSON, M. C. and VERDIN, J. P. (Eds.). 2012. Remote Sensing of Drought: Innovative Monitoring Approaches. Boca Raton, FL: CRC Press/Taylor and Francis.
  33. WEIER, J. and HERRING, D. 2000. Measuring Vegetation (NDVI & EVI). NASA earth observatory. [Online]. Available at: https://earthobservatory.nasa.gov/Features/MeasuringVegetation [Accessed: 2018, May 1].
  34. ZHANG, C. and KOVACS, J. M. 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712. DOI: 10.1007/s11119-012-9274-5 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.