LOCOMOTOR, ESCAPING ACTIVITIES AND FATTY ACID COMPOSITION OF MUD CRAB, SCYLLA OLIVACEA AT DIFFERENT WATER VELOCITIES

Authors

  • Muhammad Taufik Institute of Tropical Aquaculture and Fisheries Research, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • Hidayah Manan Institute of Tropical Aquaculture and Fisheries Research, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • Shahrul Ismail Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • Mohd Nordin Abdul Rahman Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
  • Mhd Ikhwanuddin Institute of Tropical Aquaculture and Fisheries Research, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia STU-UMT Joint Shellfish Research Laboratory, Shantou University, 515063, Guangdong, China
  • Ambok Bolong Abol-Munafi Institute of Tropical Aquaculture and Fisheries Research, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.13861

Keywords:

Aquaculture, behaviour, dislocation, movement, biochemical change

Abstract

This study was designed to determine the locomotor, escaping capability and fatty acids (FAs) composition of muscle Scylla olivacea mud crabs at different water velocities. Male and female immature S. olivacea were cultured at 0, 20, 40 and 60 cm/sin a recirculating marine aquaculture system. Increase in flow velocity increased the mean locomotor activity and escaping capability of the crabs. Significant differences were observed between sexes for both activities in all velocities tested (p < 0.05). Male and female crabs reared at the lowest flow velocity (0 cm/s) exhibited a mean of 13 and 55 locomotion per 15 minutes tested, respectively. Meanwhile, in the highest flow velocity (60 cm/s), male and female crabs exhibited 61 and 70 locomotion’s per 15 minutes. A total of 3111 locomotion were recorded during the entire experiment. An increase in the water velocities increased the mean escaping capability of the crabs. A total of 32 crabs attempted to escape during the flow velocity tests (0 cm/s; n = 3, 20 cm/s; n = 9, 40 cm/s; n = 11, and 60 cm/s; n = 9). The locomotor of crabs increased gradually and peaked at 40 cm/s (seeking for shelter). By contrast ≥ 40 cm/s the locomotor of crab decreased (defensive mode). For FAs analysis, total fatty acids (TFAs) content was found highest at 20 cm/s compared to other velocities. This study clearly show that the locomotor activities, escaping capabilities and FAs composition of S. olivacea were affected by water velocities under laboratory conditions.

References

Perry, W. L. and Jones, H. M. 2018. Effects of Elevated Water Velocity on the Invasive Rusty Crayfish (Orconectes rusticus Girard, 1852) in a Laboratory Mesocosm. Journal of Crustacean Biology. 38: 13-22. DOI: 10.1093/jcbiol/rux092.

Daisgaard, J., Lund, L., Thorarinsdottir, R., Drengstig, A., Arvonen, K., and Pedersen, P. B. 2013. Farming Different Species in RAS in Nordic Countries: Current Status and Future Perspective. Aquaculture Engineering. 53: 2-13. DOI: 10.1016/j.aquaeng.2012.11.008.

McKenzie, D. J., Hoglund, E., Dupont-Prinet, A., Larsen, B. K., Skov, P. V., Pedersen, P. B., and Jokumsen, A. 2012. Effect of Stocking Density and Sustained Aerobic Exercise on Growth, Energetic and Welfares of Rainbow Trout. Aquaculture. 338-341: 216-222. DOI: 10.1016/j.aquaculture.2012.01.020.

Lupandin. 2005. Effect of Flow Turbulence on Swimming Speed of Fish. Biology Bulletin. 32: 461-466. DOI: 10.1007/s10525-005-0125-z.

Xialong, G., Xian, L., Mo, Z., Fucun, W., Ce, S., and Ying, L. 2017. Effect of Flow Velocity on Growth, Food Intake, Body Composition, and Related Gene Expression of Haliotis discus hannai Ino. Aquaculture. 481: 48-57. DOI: 10.1016/j.aquaculture.2017.08.023.

Rejeki, S. 2007. The Effects of Different Water Flow Rates on the Survival Rate of Blue Crab (Portunus pelagicus) zoea IV – megalopa Stages. Journal of Coastal Development. 10: 197-203.

https://ejournal.undip.ac.id/index.php/coastdev/article/download/1183/983.

Azra, M. N., Chen, J. C., Ikhwanuddin, M. and Abol-Munafi, A. B. 2018. Thermal Tolerance and Locomotor Activity of Blue Swimmer Crab Portunus pelagicus Instar Reared at Different Temperatures. Journal of Thermal Biology. 74: 234-240. DOI: 10.1016/j.jtherbio.2018.04.002.

Ikhwanuddin, M., Abol-Munafi, A. B. and Azra, M. N. 2019. Data on the Molting Duration and Time of Hardening of Instar Crab at Different Culture Temperatures. Data in Brief. 25: 104196. DOI: 10.1016/j.dib.2019.104196.

Azra, M. N., Ikhwanuddin, M. and Abol-Munafi, A. B. 2019. Behavioural Data on Instar Crab Movement at Different Thermal Acclimation. Data in Brief. 22: 998-1002. DOI: 10.1016/j.dib.2019.01.026.

Peter, V. R. 1996. Flow through Animal Burrows in Mangrove Creeks. Estuarine. Coastal and Shelf Science. 43: 617-625. DOI: 10.1006/ecss.1996.0091.

Amin-Safwan, A., Muhd-Farouk, H., Mardhiyyah, M. P., Nadirah, M. and Ikhwanuddin, M. 2018. Does Water Salinity Affect the Level of 17b-Estradiol and Ovarian Physiology of Orange Mud Crab, Scylla olivacea (Herbst, 1796) in Captivity? Journal of King Saud University – Science. DOI: 10.1016/j.jksus.2018.08.006.

Azra, M. N., and Ikhwanuddin, M. 2016. A Review of Maturation Diets for Mud Crab Genus Scylla Broodstock: Present Research, Problems and Future Perspective. Saudi Journal of Biological Sciences. 23: 257-267. DOI: 10.1016/j.sjbs.2015.03.011.

Ikhwanuddin, M., Azmie, G., Nahar, S. F., Wee, W., Azra, M. N., and Abol-Munafi, A. B. 2018. Testis Maturation Stages of Mud Crab (Scylla olivacea) Broodstock on Different Diets. Sains Malaysiana. 47: 427-432. DOI: 10.17576/jsm-2018-4703-01.

Ghazali, A., Noordin, N. M., Abol-Munafi, A. B., Azra, M. N. and Ikhwanuddin, M. 2017. Ovarian Maturation Stages of Wild and Captive Mud Crab, Scylla olivacea Fed with Two Diets. Sains Malaysiana. 46: 2273-2280. DOI: 10.17576/jsm-2017-4612-03.

Balange, A. K., Vartak, V. R. and Singh, R. K. 2003. Mud Crab Scylla tranquebarica (Fabricius) of West Coast of India and Its Traditional Culture Practices in Konkan Coastal Region. Journal of Fishing Chimes, 23(1): 92-96. http://aquaticcommons.org/16619/1/JIFA30_105.pdf.

Skonberg, D. L. and Perkins, B. L. 2002. Nutrient Composition of Green Crab (Carcinus maenus) Leg Meat and Claw Meat. Food Chemistry. 77: 401-404. DOI: 10.1016/S0308-8146(01)00364-8.

Ghazali, A., Azra, M. N., Noordin, N., Abol-Munafi, A. B., Ikhwanuddin, M. 2017. Ovarian Morphological Development and Fatty Acids Profile of Mud Crab (Scylla olivacea) Fed with Various Diets. Aquaculture. 468: 45-52. DOI: 10.1016/j.aquaculture.2016.09.038.

Abol-Munafi, A. B., Mukrim, M. S., Amin, M. R., Azra, M. N., Ghazali, A. and Ikhwanuddin, M. 2016. Histological Profile and Fatty Acid Composition in Hepatopancreas of Blue Swimming Crab, Portunus pelagicus (Linnaeus, 1758) at Different Ovarian Maturation Stages. Turkish Journal of Fisheries and Aquatic Sciences. 16: 251-258. DOI: 10.4194/1303-2712-v16_2_04.

Gil, A. 2002. Polyunsaturated Fatty Acids and Inflammatory Disease. Biomedicine and Pharmacotherapy. 56: 388-396. https://www.ncbi.nlm.nih.gov/pubmed/12442911.

Taufik, M., Zainuddin, B., Azra, M. N. and Ikhwanuddin, M. 2016. Effects of Various Microalgae on Fatty Acid Composition and Survival Rate of the Blue Swimming Crab Portunus pelagicus Larvae. Indian Journal of Geo Marine Sciences. 45: 1512-1521. http://nopr.niscair.res.in/bitstream/123456789/38612/1/IJMS%2045%2811%29%201512-1521.pdf.

Taufik, M., Bachok, Z., Azra, M. N. and Ikhwanuddin, M. 2014. Identification and Determination of the Fatty Acid Composition of Portunus pelagicus in Setiu Wetland Areas, Terengganu, Malaysia by GC-MS. Middle-East Journal of Scientific Research. 21: 1908-1915. DOI: 10.5829/idosi.mejsr.2014.21.10.84143.

Alhazzaa, R., Nichols, P. D. and Carter, C. G. 2018. Sustainable Alternatives to Dietary Fish Oil in Tropical Fish Aquaculture. Reviews in Aquaculture. DOI: 10.1111/raq.12287.

Tran, N. T., Li, Z., Wang, S., Zheng, H., Aweya, J. J., Wen, X. and Li, S. 2018. Progress and Perspectives of Shortâ€chain Fatty Acids in Aquaculture. Reviews in Aquaculture. DOI: 10.1111/raq.12317.

Canavate, J. P. 2019. Advancing Assessment of Marine Phytoplankton Community Structure and Nutritional Value from Fatty Acid Profiles of Cultured Microalgae. Reviews in Aquaculture. 11: 527-549. DOI: 10.1111/raq.12244.

White, C. A., Woodcock, S. H., Bannister, R. J. and Nichols, P. D. 2019. Terrestrial Fatty Acids as Tracers of Finfish Aquaculture Waste in the Marine Environment. Reviews in Aquaculture. 11: 133-148. DOI: 10.1111/raq.12230.

Azra, M. N., Aaqillah-Amr, M. A., Ikhwanuddin, M., Ma, H., Waiho, K., Ostrensky, A., Tavares, C. P. D. S. and Abol-Munafi, A. B. 2019. Effects of Climateâ€induced Water Temperature Changes on the Life History of Brachyuran Crabs. Reviews in Aquaculture. DOI: 10.1111/raq.12380.

Ikhwanuddin, M., Bachok, Z., Hilmi, M. G., Azmie, G. and Zakaria, M. Z. 2010. Species Diversity, Carapace Width-body Weight Relationship, Size Distribution and Sex Ratio of Mud Crab, Genus Scylla from Setiu Wetlands of Terengganu Coastal Waters, Malaysia. Journal of Sustainability Science and Management. 5: 97-109. http://jssm.umt.edu.my/files/2012/05/9.Dec10.pdf.

Ikhwanuddin, M., Bachok, Z., Mohd Faizal, W. W. F., Azmie, G., and Abol-Munafi, A. B. (2010). Size of Maturity Of Mud Crab Scylla olivacea (Herbst, 1796) from Mangrove Areas of Terengganu Coastal Waters. Journal of Sustainability Science and Management. 5: 134-147. http://jssm.umt.edu.my/files/2012/05/12.Dec10.pdf.

Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., and Smith III, T. J. 2012. The Role of Mangroves in Attenuating Storm Surges. Estuarine, Coastal and Shelf Science. 102-103: 11-23. DOI: 10.1016/j.ecss.2012.02.021.

Kathiresan, K. 2003. How do Mangrove Forests Induce Sedimentation? Revista de Biologia Tropical. 51: 355-359. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442003000200007&lng=en&tlng=en.

Peter, A. 2011. Solomon Coder (beta version 11.01.22): A Simple Solution for Behaviour Coding. http://www.solomoncoder.com.

Abdulkadir, S. and Tsuchiya, M. 2008. One-step Method for Quantitative and Qualitative Analysis of Fatty Acids in Marine Animal Samples. Journal of Experimental Marine Biology and Ecology. 354: 1-8. DOI: 10.1016/j.jembe.2007.08.024.

Martinez, M. M. 2001. Running in the Surf: Hydrodynamics of the Shore Crab Grapsus tenuicrustatus. Journal of Experimental Biology. 204: 3097-3112. http://jeb.biologists.org/content/jexbio/204/17/3097.full.pdf.

Lipcius, R. N., Olmi III, E. J. and Montirans, J. V. 1990. Planktonic Availability, Molt Stage and Settlement of Blue Crab Postlarvae. Marine Ecology Progress Series. 58: 235-242. https://www.int-res.com/articles/meps/58/m058p235.pdf.

Huntingford, F. A., Taylor, A. C., Smith, I. P. and Thorpe, K. E. 1995. Behavioral and Physiological Studies of Aggression in Swimming Crabs. Journal of Experimental Marine Biology and Ecology. 193: 21-39. DOI: 10.1016/0022-0981(95)00108-5.

Shumway, S. E. 1978. Osmotic Balance and Respiration in the Hermit Crab, Pagurus bernhardus, Exposed to Fluctuating Salinities. Journal of the Marine Biological Association of the United Kingdom. 58: 869-876. DOI: 10.1017/S0025315400056824.

Latyshev, N. A., Kasyanov, S. P., Kharlamenko, V. I. and Svetashev, V. I. 2009. Lipids and Fatty Acids of Edible Crabs of North-Western Pacific. Food and Chemistry. 116: 657-661. DOI: 10.1016/j.foodchem.2006.10.047.

Chen, D., Zhang, M., and Shrestha, S. 2007. Compositional Characteristics and Nutritional Quality of Chinese Mitten Crab (Eriocheir sinensis). Food and Chemistry. 103: 1343-1349.DOI: 10.1016/j.foodchem.2006.10.047.

Wu, X., Zhou, B., Cheng, Y., Zeng, C., Wang, C. and Feng, L. (2010). Comparison of Gender Differences in Biochemical Composition and Nutritional Value of Various Edible Parts of the Blue Swimmer Crab. Journal of Food Comparative and Analysis. 23: 154-159. DOI: 10.1016/j.jfca.2009.08.007.

Light, T. 2003. Success and Failure in a Lotic Crayfish Invasion: The Roles of Hydrologic Variability and Habitat Alteration. Freshwater Biology. 48: 1886-1897. DOI: 10.1046/j.1365-2427.2003.01122.

Bubb, D. H., Thom, T. J. and Lucas, M. C. 2004. Movement and Dispersal of the Invasive Signal Crayfish Pacifastacus leniusculus in Upland Rivers. Freshwater Biology, 49: 357-368. DOI: 10.1111/j.1365-2426.2003.01178.

Maude, S. H. and Williams, D. D. 1983. Behavior of Crayfish in Water Currents: Hydrodynamics of Eight Species with Reference to Their Distribution Patterns in Southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences. 40: 68-77. DOI: 10.1139/f83-010.

Kerby, J. L., Riley, S. P. D., Kats, L. B. and Wilson, P. 2005. Barriers and Flow as Limiting Factors in the Spread of an Invasive Crayfish (Procambarus clarkii) in Southern California Streams. Biological Conservation. 126: 402409. https://www.csun.edu/~hcbio028/pubs/Kerby.pdf.

Clark, J. M., Kershner, M. W. and Holomuzki, J. R. 2008. Grain Size and Sorting Effects on Size-dependent Responses by Lotic Crayfish to High Flows. Hydrobiologia. 610: 55-66. DOI: 10.1007/s10750-008-9422-0.

Foster, H. R. and Keller, T. A. 2011. Flow in Culverts as a Potential Mechanism of Stream Fragmentation for Native and Nonindigenous Crayfish Species. Freshwater Sciences. 30: 1129-1137. DOI: 10.1899/10-096.1.

Moore, P. A. and Grills, J. L. 1999. Chemical Orientation to Food by the Crayfish Orconectes rusticus: Influence of Hydrodynamics. Animal Behavior. 58: 953-963. DOI: 10.1006/anbe.1999.1230.

Bobeldyk, A. M. and Lamberti, G. A. 2008. A Decade After Invasion: Evaluating the Continuing Effects of Rusty Crayfish on a Michigan River. Great Lakes Research. 34: 265–275. DOI: 10.3394/0380.

Downloads

Published

2019-12-04

Issue

Section

Science and Engineering

How to Cite

LOCOMOTOR, ESCAPING ACTIVITIES AND FATTY ACID COMPOSITION OF MUD CRAB, SCYLLA OLIVACEA AT DIFFERENT WATER VELOCITIES. (2019). Jurnal Teknologi, 82(1). https://doi.org/10.11113/jt.v82.13861