Skip to main content
Log in

Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Twenty algal-oligosaccharide-lysates (AOLs), derived from six agars and four algal polysaccharide extracts (APEs), were treated first with agarases with 250 or 500 agarase activity units (AU), which were produced from the agar-liquefying bacterial strain Pseudomonas vesicularis MA103, named MA103-agarases. The AOLs were then treated with agarases (250 or 500 AU) derived from the agar-softening bacterial strain Aeromonas salmonicida MAEF 108, named MAEF 108-agarases. Anti-oxidative properties of the AOLs were evaluated by five in vitro methods. The AOL obtained from the APE of Porphyra dentate, digested by 250 AU of MA 103-agarases, and by 250 AU of MAEF 108-agarases, designated as A250-Por, showed better results than the 19 other AOLs. This result is in accordance with the level of soluble total polyphenols (STP) of A250-Por, which was also higher than the remainder of the AOLs tested. The AOL derived from the APE of P. dentate, digested by 500 AU of MA103-agarases and then 500 AU of MAEF108-agarases, and designated as B500-Por, displayed the second highest data in four potential evaluation methods, except in H2O2 scavenging capacity. In this study, certain agars or APEs digested by specific agarases can present an increasing antioxidative capacity. These agars include Bitek agar, Agar powder, Bacteriological, Agar Bacteriological, and Guanghui agar, plus APEs of Gracilaria sp. and Monostroma nitidum decomposed stepwise by two agarases. The fraction of polyphenols (<1 kDa) that were derived from A250-Por showed anti-oxidative activities on α, α-diphenyl-β-picrylhydrazyl (DPPH) assay and reducing power determination, while the remaining four agar-lytic fractions obtained from A250-Por did not exhibit anti-oxidative activity. This phenomenon may suggest that anti-oxidative properties of AOLs originate in polyphenols. Algal-oligosaccharide-lysates may have potential use as a health food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee H-O, Kim D-S, Do J-R, Ko Y-S. Angiotensin-1 converting enzyme inhibitory activity of algae. J. Korean Fish. Soc. 1999; 32: 427–431.

    Google Scholar 

  2. Crasta P, Raviraja NS, Sridhar KR. Antimicrobial activity of some marine algae of southwest coast of India. Indian J. Mar. Sci. 1997; 26: 201–205.

    Google Scholar 

  3. Ito K, Hori K. Seaweed: Chemical composition and potential food uses. Food Reviews Int. 1989; 5: 101–144.

    Article  CAS  Google Scholar 

  4. Padmakumar K, Ayyakkannu K. A seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coasts of India. Botanica Marina 1997; 40: 507–515.

    Google Scholar 

  5. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. Studies on the antitumour activity of marine algae. Nippon Suisan Gakkaishi 1989; 55: 1259–1264.

    Google Scholar 

  6. Noda H, Amano H, Arashima K, Arashima K, Hashimoto S, Nisizawa K. Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 1989; 55: 1265–1271.

    Google Scholar 

  7. Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher A-M, Boisson-Vidal C. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydr. Res. 1999; 319: 154–165.

    Article  PubMed  CAS  Google Scholar 

  8. Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 2003; 65: 173–179.

    Article  PubMed  CAS  Google Scholar 

  9. Caderni G, Luceri K, Achour L, Tessitore L, Dolara P. Slow release pellets of sodium butyrate increase apoptosis in the colon of rats treated with azoxymethane, without affecting aberrant crypt fovi and colonic proliferation. Nutr. Cancer 1998; 30: 175–181.

    PubMed  CAS  Google Scholar 

  10. Jacobs LR. Effect of dietary fiber on colon cell proliferation and its relationship to colon carcinogenesis. Per. Med. 1987; 16: 566–571.

    Article  CAS  Google Scholar 

  11. Yoshizawa Y, Tsunehiro J, Nomura K, Itoh M, Fukui F, Ametani A, Kaminogawa S. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa). Biosci. Biotechnol. Biochem. 1996; 60: 1667–1671.

    PubMed  CAS  Google Scholar 

  12. Banga B. Seaweed: Used for everything from fertilizer to food. Sea Technol. 2002; 43: 15–22.

    Google Scholar 

  13. Araki C. Seaweed polysaccharides. In: Wolfrom ML (ed.), Carbohydrate Chemistry of Substances of Biological Interest. Proceedings of the 4th International Congress of Biochemistry, Vienna, Vol. 1, Pergamon Press, London, 1959; 15–30.

    Google Scholar 

  14. Hassairi I, Amar RB, Nonus M, Gupta BB. Production and separation of α-agarase from Altermonas agarlyticus strain GJIB. Bioresour. Technol. 2001; 79: 7–51.

    Article  Google Scholar 

  15. Kobayashi R, Takimasa M, Suzuki T, Kirimura K, Usami S, Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 1997; 61: 162–163.

    Article  PubMed  CAS  Google Scholar 

  16. Kong JY. Production and Functional Properties of Agarooligosaccharides. Proceedings of Symposium on Scientific Study and Industrialization of Health Food. Health Food Society of Taiwan, Taipei, 2001.

    Google Scholar 

  17. Osumi Y, Kawai M, Amano H, Noda H. Effect of oligosaccharides from porphyran on in vitro digestion, utilizations by various intestinal bacteria, and levels of serum lipids in mice. Nippon Suisan Gakkaishi 1998; 64: 98–104.

    CAS  Google Scholar 

  18. Yoshizawa Y, Ametani A, Tsunehiro J, Nomura K, Itoh M, Fukui F, Kaminogawa S. Macrophage stimulation activity of the polysaccharide fraction of a marine alga (Porphyra yezoensis): Structure-function relationships and improved solubility. Biosci. Biotechnol. Biochem. 1995; 59: 1933–1937.

    Article  PubMed  CAS  Google Scholar 

  19. Wu S-C, Pan C-L. Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fish. Sci. 2004; 70: 1164–1173.

    Article  CAS  Google Scholar 

  20. Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative system in plants. Curr. Sci. 2002; 82: 1227–1238.

    CAS  Google Scholar 

  21. Vaya J, Aviram M. Nutritional antioxidants: Mechanisms of action, analyses of activities and medical applications. Curr. Med. Chem. Immune Endocr. Metabol. Agents 2001; 1: 99–117

    Article  CAS  Google Scholar 

  22. Ahn C-B, Jeon Y-J, Kang D-S, Shin T-S, Jung B-M. Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res. Intern. 2004; 37: 253–258.

    Article  CAS  Google Scholar 

  23. Heo S-J, Jeon Y-J, Lee J, Kim HT, Lee K-W. Antioxidant effect of enzymatic hydrolyzate from a kelp. Ecklonia cava. Algae 2003; 18: 341–347.

    Google Scholar 

  24. Je J-Y, Park P-J, Kim S-K. Radical scavenging activity of hetero-chitooligosaccharides. Eur. Food Res. Technol. 2004; 219: 60–65.

    Article  CAS  Google Scholar 

  25. Mallick N, Mohn FH. Reactive oxygen species: response of algal cells. J. Plant Physiol. 2000; 157: 183–193.

    CAS  Google Scholar 

  26. Gülçin I, Ûuz MT, Oktay M, Beyderir Ş, Küfrevioĝlu ÖI. Evaluation of the antioxidant and antimicrobial activities of clary sage (Salvia sclarea L.). Turk. J. Agric. For. 2004; 28: 25–33.

    Google Scholar 

  27. Guo J-T, Lee H-L, Chiang S-H, Lin F-I, Chang C-Y. Antioxidant properties of the extracts from different parts of broccoli in Taiwan. J. Food Drug Anal. 2001; 9: 96–101.

    Google Scholar 

  28. Yen G-C, Duh P-D, Tsai H-L. 2002. Antioxidant and prooxidant properties of ascorbic acid and gallic acid. Food Chem. 2002; 79: 307–313.

    Article  CAS  Google Scholar 

  29. Shahidi F, Naczk M. Antioxidant properties of food phenolics. In: Shahidi F, Naczk M (eds): Phenolics in Food and Nutraceuticals. CRC Press, New York. 2004; 403–442.

    Google Scholar 

  30. Escribano-Bailón M, Santos-Buelga C. Polyphenol extraction from foods. In: Santos-Buelga C, Williamson G (eds). Methods in Polyphenol Analysis, Athenaeum Press Ltd., Gateshead, Tyne and Wear, UK. 2003; 1–16.

    Google Scholar 

  31. Morrice LM, McLean MW, Long WF, Williamson FB. β-agarase I and II from Pseudomonas atlantica. Eur. J. Biochem. 1983; 137: 149–154.

    Article  PubMed  CAS  Google Scholar 

  32. Kuo J-M, Yeh D-B, Pan Bs. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 1999; 47: 3206–3209.

    Article  PubMed  CAS  Google Scholar 

  33. Rupérez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002; 50: 840–845.

    Article  PubMed  CAS  Google Scholar 

  34. Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001; 81: 530–534.

    Article  Google Scholar 

  35. Montreau FR. Sur le dossage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteau. Conn. Vigne. Vin. 1972; 24: 397–404 (in French).

    Google Scholar 

  36. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956; 28: 350–354.

    Article  CAS  Google Scholar 

  37. Je J-Y, Park P-J, Kim S-K. Radical scavenging activity of hetero-chitooligosaccharides. Eur. Food Res. Technol. 2004, 1997; 219: 60–65.

    Article  CAS  Google Scholar 

  38. SAS Institute. User’s Guide. Release 8.0 ed. SAS Institute, Cary, N.C. 1997.

    Google Scholar 

  39. Heo S-J, Lee K-W, Song CB, Jeon Y-J. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 2003; 18: 71–81.

    Article  Google Scholar 

  40. Blázovics A, Lugasi A, Szentmihályi K, Kéry Á. Reducing power of the natural polyphenols of Sempervivum tectorum in vitro and in vivo. Acta Biol. Szeged. 2003; 47: 99–102.

    Google Scholar 

  41. Nakayama R, Tamura Y, Kikuzaki H, Nakatani N. Antioxidant effect of the constituents of susabinori (Porphyra yezoensis). J. Am. Oil Chem. Soc. 1999; 76: 649–653.

    Article  CAS  Google Scholar 

  42. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I. A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol. 1997; 9: 29–35.

    Article  CAS  Google Scholar 

  43. Halliwell B, Gutteridge HMC, Aruoma OI. The deoxyribose method: a simple ‘test-tube’ assay for determination pf rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987; 165: 215–219.

    Article  PubMed  CAS  Google Scholar 

  44. Yan X, Nagata T, Fan X. Antioxidative activities in some common seaweed. Plant. Foods Hum. Nutr. 1998; 52: 253–262.

    Article  PubMed  CAS  Google Scholar 

  45. Dongowski G, Sembries S. Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall. J. Agric. Food Chem. 2001; 49: 4236–4242.

    Article  PubMed  CAS  Google Scholar 

  46. Mehrländer K, Dietrich H, Sembries S, Dongowski G, Will F. Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction. J. Agric. Food Chem. 2002; 50: 1230–1236.

    Article  PubMed  CAS  Google Scholar 

  47. Revilla I, González-Sanlosé ML. Multivariate evaluation of changes induced in red wine characteristics by the use of extracting agents. J. Agric. Food Chem. 2002; 50: 4525–4530.

    Article  PubMed  CAS  Google Scholar 

  48. van der Sluis AA, Dekker M, Skrede G, Jongen WMF. Activity and concentration of polyphenolic antioxidants in apple juice. I. Effect existing production methods. J. Agric. Food Chem. 2002; 50: 7211–7219.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chorng-Liang Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SC., Wen, TN. & Pan, CL. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fish Sci 71, 1149–1159 (2005). https://doi.org/10.1111/j.1444-2906.2005.01075.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2005.01075.x

Key words

Navigation