Abstract

Variation in ontogenetic development among individuals may be a major contributor to morphological variation within species. Evolution of different growth trajectories might, for example, evolve as a response to varying ecological contexts of individuals living in different environments, or by life‐stage or gender differences. The intertidal periwinkle Littorina saxatilis is strongly polymorphic in shell shape. We compared ontogenetic trajectories between life stages, local populations, and sexes to understand how different morphological end points are reached during ontogeny and what might cause these differences. Applying landmark‐based geometric morphometrics, we captured shell shape variation for four Swedish populations of this species. We also derived a method to visualize ontogenetic trajectories described by the relationship of size to the multivariate shape space. We found that growth trajectories differed between individuals living in different habitats, as well as between sexes and maturity stages. Males living on rocky cliffs grew isometrically throughout life, whereas females from the same habitat switched from isometric growth as juveniles to allometric growth as adults. In contrast, males and females living on boulders grew allometrically as juveniles but changed to isometric growth at sexual maturity. Thus, in this species, ontogenetic growth seems influenced by habitat‐associated selection as well as by gender and age‐specific selection. These differing selection regimes result in ontogenetic shifts in allometry in three of the four groups examined.

Literature Cited

Adams
,
D. C.
 
2004
.
Character displacement via aggressive interference in Appalachian salamanders
.
Ecology
 
85
:
2664
2670
.

Adams
,
D. C.
, and
F. J.
Rohlf
.
2000
.
Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study
.
Proc. Natl. Acad. Sci. USA
 
97
:
4106
4111
.

Adams
,
D. C.
,
F. J.
Rohlf
, and
D. E.
Slice
.
2004
.
Geometric morphometrics: ten years of progress following the “revolution.” Ital
.
J. Zool.
 
71
:
5
16
.

Birch
,
J.‐M.
 
1999
.
Skull allometry in the marine toad, Bufo marinus
.
J. Morphol.
 
241
:
115
126
.

Bookstein
,
F. L.
 
1991
.
Morphometric tools for landmark data: geometry and biology
.
Cambridge Univ. Press
, Cambridge, U.K.

1996
. Combining the tools of geometric morphometric. Pp.
131
151
 in  
L. F.
Marcus
,
M.
Corti
,
A.
Loy
,
G. J. P.
Naylor
, and
D. E.
Slice
, eds.
 
Advances of morphometrics. NATO ASI Series A: Life sciences
. Vol.
284
.
Plenum
, New York.

Callery
,
E. M.
,
H.
Fang
, and
R. P.
Elinson
.
2001
.
Frogs without polliwogs: evolution of anuran direct development
.
Bioessays
 
23
:
233
241
.

Cardini
,
A.
, and
P.
Tongiorgi
.
2003
.
Yellow‐bellied marmots (Marmota flaviventris) “in the shape space” (Rodentia, Sciuridae): sexual dimorphism, growth and allometry of the mandible
.
Zoomorphology
 
122
:
11
23
.

Cock
,
A. G.
 
1966
.
Genetic aspects of metrical growth and form in animal
.
Q. Rev. Biol.
 
41
:
131
190
.

Collyer
,
M. L.
,
J. M.
Novak
, and
C. A.
Stockwell
.
2005
.
Morphological divergence of native and recently established populations of White Sands pupfish (Cyprinodon tularosa)
.
Copeia
 
2005
:
1
11
.

Denny
,
M. W.
 
1988
.
Biology and the mechanics of the wave‐swept environment
.
Princeton Univ. Press
, Princeton, NJ.

Denny
,
M. W.
,
T. L.
Daniel
, and
M. A. R.
Koehl
.
1985
.
Mechanical limits to size in wave‐swept organisms
.
Ecol. Monogr.
 
55
:
69
102
.

DeWitt
,
T. J.
,
B. W.
Robinson
, and
D. S.
Wilson
.
2000
.
Functional diversity among predators of a freshwater snail imposes an adaptive trade‐off for shell morphology
.
Evol. Ecol. Res.
 
2
:
129
148
.

Elner
,
R. W.
, and
D. G.
Raffaelli
.
1980
.
Interactions between two marine snails, Littorina rudis Maton and Littorina nigrolineata Gray, a predator, Carcinus maenas (L.) and a parasite, Microphallus similis Jägerskiöld
.
J. Exp. Mar. Biol. Ecol.
 
43
:
151
160
.

Emson
,
R. H.
, and
R. J.
Faller‐Fritsch
.
1976
.
An experimental investigation into the effect of crevice availability on abundance and size‐structure in a population of Littorina rudis (Maton): Gastropoda: Prosobranchia
.
J. Exp. Mar. Biol. Ecol.
 
23
:
285
297
.

Fairbairn
,
D. J.
 
1997
.
Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females
.
Annu. Rev. Ecol. Syst.
 
28
:
659
687
.

Futuyma
,
D. J.
 
2005
.
Evolution
.
Sinauer Associates
, Sunderland, MA.

Gaylord
,
B.
 
1999
.
Detailing agents of physical disturbance: wave‐induced velocities and accelerations on a rocky shore
.
J. Exp. Mar. Biol. Ecol.
 
239
:
85
124
.

Glazier
,
D. S.
 
2005
.
Beyond the “3/4‐power law”: variation in the intra‐ and interspecific scaling of metabolic rate in animals
.
Biol. Rev.
 
80
:
611
662
.

Guralnick
,
R.
, and
J.
Kurpius
.
2001
. Spatial and temporal growth patterns in the phenotypically variable Littorina saxatilis: surprising patterns emerge from chaos. Pp.
195
227
 in  
M. L.
Zelditch
, ed.
Beyond heterochrony: the evolution of development
.
Wiley‐Liss
, New York.

Hart
,
A.
, and
M.
Begon
.
1982
.
The status of general reproductive strategy theories, illustrated in winkles
.
Oecologia
 
52
:
37
42
.

Hollander
,
J.
,
M.
Lindegarth
, and
K.
Johannesson
.
2005
.
Local adaptation but not geographic separation promotes assortative mating in a snail: support for ecological speciation
.
Anim. Behav.
 
70
:
1209
1219
.

Hollander
,
J.
,
M. L.
Collyer
,
D. C.
Adams
, and
K.
Johannesson
.
2006
.
Phenotypic plasticity in two marine snails: constraints superseding life history
.
J. Evol. Biol.
 
19
:
1861
1872
.

Huxley
,
J.
 
1932
.
Problems of relative growth
.
Dial Press
, New York.

Ilano
,
A.‐S.
,
K.
Fujinaga
, and
S.
Nakao
.
2004
.
Mating, development and effects of female size on offspring number and size in the neogastropod Buccinum isaotakii. (Kira, 1959)
.
J. Molluscan Stud.
 
70
:
277
282
.

Janson
,
K.
 
1982a
.
Phenotypic differentiation in Littorina saxatilis Olivi (Mollusca, Prosobranchia) in a small area on the Swedish west coast
.
J. Molluscan Stud.
 
48
:
167
173
.

1982b
.
Genetic and environmental effects on the growth rate of Littorina saxatilis Olivi
.
Mar. Biol.
 
69
:
73
78
.

1983
.
Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden
.
Oecologia
 
59
:
58
61
.

Janson
,
K.
, and
P.
Sundberg
.
1983
.
Multivariate morphometric analysis of two varieties of Littorina saxatilis from the Swedish west coast
.
Mar. Biol.
 
74
:
49
53
.

Johannesson
,
B.
 
1986
.
Shell morphology of Littorina saxatilis Olivi: the relative importance of physical factors and predation
.
J. Exp. Mar. Biol. Ecol.
 
102
:
183
195
.

Johannesson
,
B.
, and
K.
Johannesson
.
1996
.
Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation
 
J. Zool.
 
240
:
475
493
.

Johannesson
,
K.
 
2001
.
Parallel speciation: a key to sympatric divergence
.
Trends Ecol. Evol.
 
16
:
148
153
.

2003
.
Evolution in Littorina: ecology matters
.
J. Sea Res.
 
49
:
107
117
.

Johannesson
,
K.
, and
A.
Tatarenkov
.
1997
.
Allozyme variation in a snail (Littorina saxatilis): deconfounding the effects of micro‐habitat and gene flow
.
Evolution
 
51
:
402
409
.

Johannesson
,
K.
,
B.
Johannesson
, and
E.
Rolán‐Alvarez
.
1993
.
Morphological differentiation and genetic cohesiveness over a mi‐croenvironmental gradient in the marine snail Littorina saxatilis
.
Evolution
 
47
:
1770
1787
.

Johannesson
,
K.
,
E.
Rolán‐Alvarez
, and
J.
Erlandsson
.
1997
.
Growth rate differences between upper and lower shore ecotypes of the marine snail Littorina saxatilis (Olivi) (Gastropoda)
.
Biol. J. Linn. Soc.
 
61
:
267
279
.

Johannesson
,
K.
,
J.
Lundberg
,
C.
Andre
, and
P. G.
Nilsson
.
2004
.
Island isolation and habitat heterogeneity correlate with DNA variation in a marine snail (Littorina saxatilis)
.
Biol. J. Linn. Soc.
 
82
:
377
384
.

Johnson
,
M. S.
, and
R.
Black
.
2000
.
Associations with habitat versus geographic cohesiveness: size and shape of Bembicium vittatum Philippi (Gastropoda: Littorinidae) in the Houtman Abrolhos Islands
.
Biol. J. Linn. Soc.
 
71
:
563
580
.

Klingenberg
,
C. P.
 
1998
.
Heterochrony and allometry: the analysis of evolutionary change in ontogeny
.
Biol. Rev.
 
73
:
79
123
.

Loy
,
A.
,
L.
Mariani
,
M.
Bertelletti
, and
L.
Tunesi
.
1998
.
Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two‐banded sea bream, Diplodus vulgaris (Perciformes, Sparidae)
.
J. Morphol.
 
237
:
137
146
.

McKinney
,
M. L.
, and
K. J.
McNamara
.
1991
.
Heterochrony: the evolution of ontogeny
.
Plenum Press
, New York.

Palmer
,
A. R.
 
1990
.
Predator size, prey size, and the scaling of vulnerability: Hatchling gastropods versus barnacles
.
Ecology
 
71
:
759
775
.

Panova
,
M.
,
J.
Hollander
, and
S. K.
Johannesson
.
2006
.
Site‐specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers
.
Mol. Ecol.
 
15
:
4021
4031
.

Peters
,
R. H.
 
1983
.
The ecological implications of body size
.
Cambridge Univ. Press
, Cambridge, U.K.

Post
,
J. R.
, and
J. A.
Lee
.
1996
.
Metabolic ontogeny of teleost fishes
.
Can. J. Fish. Aquat. Sci.
 
53
:
910
923
.

Raffaelli
,
D. G.
, and
R. N.
Hughes
.
1978
.
The effects of crevice size and availability on populations of Littorina rudis and Littorina neritoides
.
J. Anim. Ecol.
 
47
:
71
83
.

Reid
,
D. G.
 
1996
.
Systematics and evolution of Littorina
.
The Ray Society
, London.

Rohlf
,
F. J.
 
2000
.
NTSYSpc. Ver. 2.10p. Exeter Software
,
Applied Biostatistics
, Setauket, NY.

2003
.
tpsRegr, shape regression. Ver. 1.28
.
Department of Ecology and Evolution, State University of New York
, Stony Brook, NY.

Rohlf
,
F. J.
, and
F. L.
Bookstein
.
2003
.
Computing the uniform component of shape variation
.
Syst. Biol.
 
52
:
66
69
.

Rohlf
,
F. J.
, and
L. F.
Marcus
.
1993
.
A revolution in morphometrics
.
Trends Ecol. Evol.
 
8
:
129
132
.

Rohlf
,
F. J.
, and
D.
Slice
.
1990
.
Extensions of the Procrustes method for the optimal superimposition of landmarks
.
Syst. Zool.
 
39
:
40
59
.

Rolán‐Alvarez
,
E.
,
K.
Johannesson
, and
J.
Erlandsson
.
1997
.
The maintenance of a cline in the marine snail Littorina saxatilis: the role of home site advantage and hybrid fitness
.
Evolution
 
51
:
1838
1847
.

Rolán‐Alvarez
,
E.
,
M.
Carballo
,
J.
Galindo
,
P.
Moran
,
B.
Fernandez
,
A.
Caballero
,
R.
Cruz
,
E. G.
Boulding
, and
K.
Johannesson
.
2004
.
Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes
.
Mol. Ecol.
 
13
:
3415
3424
.

Rosas
,
A.
, and
M.
Bastir
.
2002
.
Thin‐plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex
.
Am. J. Phys. Anthropol.
 
117
:
236
245
.

SAS Institute
.
2003
.
JMP. Ver. 5.1
.
SAS Institute, Inc.
Cary, NC.

Schmidt‐Nielsen
,
K.
 
1984
.
Scaling: why is animal size so important
?
Cambridge Univ. Press
, Cambridge, U.K.

Seeley
,
R. H.
 
1986
.
Intense natural selection caused a rapid morphological transition in a living marine snail Littorina obtusata
.
Proc. Natl. Acad. Sci. USA
 
83
:
6897
6901
.

Slice
,
D. E.
 
1994
.
DS‐DIGIT: basic digitizing software
.
Department of Ecology and Evolution, State University of New York
, Stony Brook, NY.

Thompson
,
D. A. W.
 
1942
.
On growth and form
.
Cambridge Univ. Press
, Cambridge, U.K.

Tissot
,
B. N.
 
1988
.
Geographic variation and heterochrony in two species of cowries (Cypraea)
.
Evolution
 
42
:
103
117
.

Tokeshi
,
M.
,
N.
Ota
, and
T.
Kawai
.
2000
.
A comparative study of morphometry in shell‐bearing molluscs
.
J. Zool.
 
251
:
31
38
.

Trussell
,
G. C.
 
1997
.
Phenotypic plasticity in the foot size of an intertidal snail
.
Ecology
 
78
:
1033
1048
.

Trussell
,
G. C.
, and
R. J.
Etter
.
2001
.
Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail
.
Genetica
 
112
:
321
337
.

Vermeij
,
G. J.
 
1972
.
Intraspecific shore‐level size gradients in in‐tertidal molluscs
.
Ecology
 
53
:
693
700
.

1980
. Gastropod shell growth rate, allometry, and adult size: environmental implications. Pp.
379
394
 in  
D. C.
Rhoads
and
R. A.
Lutz
, eds.
 
Skeletal growth of aquatic organisms: biological records of environmental change
.
Plenum Press
, New York.

This content is only available as a PDF.

Author notes

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)