research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 7,7-di­methyl-2-phenyl-3,3a,4,6,7,8,9,9a-octa­hydro-1H-benzo[f]iso­indole-1,5(2H)-dione

crossmark logo

aDepartment of Chemical and Material Engineering, Chaohu College, Chaohu, People's Republic of China
*Correspondence e-mail: mxzcd79@163.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 17 February 2022; accepted 1 March 2022; online 10 March 2022)

The title compound, C20H23NO2, was obtained via the reaction of N-allyl-N-phenyl­acryl­amide with 3-iodo­cyclo­hex-2-en-1-one using PdCl2(PPh3)2 as a catalyst. The compound crystallizes in the monoclinic space group P21/c. The fused-ring system is not planar and the five- and six-membered rings are trans-fused. The mol­ecular geometry is partially stabilized by an intra­molecular C—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis was performed. The results indicate that the most important contributions to the overall surface are from H⋯H (65.5%), O⋯H/H⋯O (17.5%) and C⋯H/H⋯C (14.3%) inter­actions.

1. Chemical context

A cascade reaction is a chemical process that comprises at least two consecutive reactions such that each subsequent reaction occurs only by virtue of the chemical functionality formed in the previous step (Nicolaou et al., 2010[Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. (2010). Angew. Chem. Int. Ed. 45, 7134-7186.]; Jash et al., 2019[Jash, M., De, S., Pramanik, S. & Chowdhury, C. (2019). J. Org. Chem. 84, 8959-8975.]; Knowles et al., 2021[Knowles, J. P., Steeds, H. G., Schwarz, M., Latter, F. & Booker-Milburn, K. I. (2021). Org. Lett. 23, 4986-4990.]). Although cascade reactions have been successfully employed for the synthesis of the core skeleton of many important natural products, the design and performance of cascade reactions remain a challenging aspect of organic chemistry (Zhang et al., 2022[Zhang, P., Zeng, J., Pan, P., Zhang, X. J. & Yan, M. (2022). Org. Lett. 24, 536-541.]; Xie & She, 2021[Xie, X. & She, X. (2021). Chin. J. Chem. 39, 795-801.]). Meanwhile, alkyl­ation of the α position of enones and their derivatives has have drawn considerable attention (Krafft et al., 2005[Krafft, M., Seibert, K., Haxell, T. & Hirosawa, C. (2005). Chem. Commun. pp. 5772-5774.]; Muimhneacháin et al., 2017[Muimhneacháin, E. Ó., Pardo, L. M., Bateman, L. M., Rao Khandavilli, U. B., Lawrence, S. E. & McGlacken, G. P. (2017). Adv. Synth. Catal. 359, 1529-1534.]; Shen & Huang, 2008[Shen, R. & Huang, X. (2008). Org. Lett. 10, 3283-3286.]; Zhang et al., 2010[Zhang, C., Yu, S. B., Hu, X. P., Wang, D. Y. & Zheng, Z. (2010). Org. Lett. 12, 5542-5545.]; Jana et al., 2021[Jana, K., Mizota, I. & Studer, A. (2021). Org. Lett. 23, 1280-1284.]). McGlacken described a Pd-catalysed coupling procedure for tricyclic oxoisochromene derivatives, which represents an example of the α aryl­ation of activated carbocyclic enone-based substrates (Muimhneacháin et al., 2017[Muimhneacháin, E. Ó., Pardo, L. M., Bateman, L. M., Rao Khandavilli, U. B., Lawrence, S. E. & McGlacken, G. P. (2017). Adv. Synth. Catal. 359, 1529-1534.]). Huang and co-workers have realized a series of reactions including Sonogashira coupling, propargyl-allenyl isomerization, and [4 + 2] cyclo­addition combined via α alkyl­ation of carbocyclic enone-based substrates, affording an efficient and stereoselective synthesis of polycyclic skeletons (Shen & Huang, 2008[Shen, R. & Huang, X. (2008). Org. Lett. 10, 3283-3286.]). Given this background, we report herein the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic crystal system in space group P21/c. Its mol­ecular structure is shown in Fig. 1[link]. The structure of a racemic compound possesses a disordered enanti­omer layout (Jacques et al., 1994[Jacques, J., Collet, A. & Wilen, S. (1994). Enantiomers, Racemates, and Resolutions. New York: John Wiley & Sons.]) and atoms C8 and C9 are found to be disordered. They were both split into two fragments (C8/C22 and C9/C21) and were refined. This refinement led to a 0.805 (10): 0.195 (10) occupancy ratio over two positions for C8 and C9. The site occupancies of C8, C9 and C21, C22 are 0.805 (10) and 0.195 (10), respectively. The fused ring system is not planar. The sp2-hybridized character of atoms C12 and C13 is confirmed by the C12—C13 [1.350 (3) Å] bond length, and the C11—C12—C15 [114.9 (2)°] and C14—C13—C18 [116.3 (2)°] bond angles. There is a strong intra­molecular hydrogen bond (C2—H2⋯O1; Table 1[link]), forming an S(6) ring motif.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.24 2.864 (3) 124
C3—H3⋯O2i 0.93 2.53 3.4513 (3) 170
C11—H11ACg3ii 0.97 2.73 3.688 (3) 168
C11—H11DCg3ii 0.97 2.95 3.688 (3) 134
C14—H14ACg3iii 0.97 2.70 3.609 (3) 156
C14—H14DCg3iii 0.97 2.90 3.609 (3) 131
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

3. Supra­molecular features

The crystal packing of the title compound (Fig. 2[link]) features inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions (C3—H3⋯O2i; C11—H11⋯Cg3ii and C14—H14ACg3iii or C11—H11DCg3ii and C14—H14DCg3iii; symmetry codes are given in Table 1[link]). In the crystal, mol­ecules are stacked together layer by layer. Mol­ecules in same layer are linked by C3—H3⋯O2 inter­actions, forming a layer parallel to the ab plane (Fig. 2[link]); Mol­ecules in different layers are linked by C11—H11ACg3 and C14—H14ACg3 or C11—H11DCg3 and C14—H14DCg3 inter­actions (Fig. 2[link]). In order to investigate the inter­molecular inter­actions in a visual manner, a Hirshfeld surface analysis was performed using CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrvstalExplorer17.The University of Western Australia.]). The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 3[link]) indicate the presence of C—H⋯π and C—H⋯O inter­actions. The absence of adjacent red and blue triangles on the shape-index map (Fig. 4[link]) suggests that there are no notable ππ inter­actions. The fingerprint plots (Fig. 5[link]) are given for all contacts, and those delineated into C⋯O/O⋯C (0.4%), O⋯N/N⋯O (0.5%), C⋯C (0.7%), N⋯H/ H⋯N (1.0%), C⋯H/H⋯C (14.3%), H⋯O/O⋯H (17.5%) and H⋯H (65.5%). The most important contributions to the crystal packing are H⋯H and O⋯H/H⋯O contacts.

[Figure 2]
Figure 2
A packing diagram of the title compound. The C—H⋯ π and C—H⋯O inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm in the range −0.2740 (red) to 1.7368 (blue) a.u.
[Figure 4]
Figure 4
The Hirshfeld surface mapped over shape-index.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound: (a) all inter­molecular inter­actions, (b) H⋯H contacts, (c) O⋯H/H⋯O contacts, (d) C⋯H/H⋯C contacts, (e) N⋯H/H⋯N contacts, (f) C⋯C contacts, (g) O⋯N/N⋯O contacts, (h) C⋯O/O⋯C contacts.

4. Database survey

A search of the Cambridge Structural Database (Version 2021.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds having a 3,3a,4,6,7,8,9,9a-octa­hydro-1H-benzo[f]iso­indole-1,5(2H)-di­one fragment gave two hits, including 2a,8,9b-trimethyl-3,4,6,6a,9a,9b-hexa­hydro­[2]benzofuro[1,7-ef]iso­indole-2,5,7,9(2aH,8H)-tetrone (I) (Florke, 2019[U.Florke (2019). CSD Communication (CCDC 1893073). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc21jwwc]) and 2-ethyl-12,12-di­meth­yl-4,6,7,8,9,9a-hexa­hydro-1H-4,9-[1,2]-epi­cyclo­buta­ben­zo[f]iso­indole-1,3,5(2H,3aH)trione (II) (Ma & Gu, 2006[Ma, S. & Gu, Z. (2006). J. Am. Chem. Soc. 128, 4942-4943.]). In these two structures, the fused-ring systems are not planar. Compound I crystallizes in the monoclinic crystal system, space group P21. The five- and six-membered rings are cis-fused. The crystal structure is characterized by the presence of C—H⋯O hydrogen bonds. Compound II crystallizes in the ortho­rhom­bic crystal system, space group Pbca. The mol­ecules are linked by C—H⋯O hydrogen bonds, and the crystal packing also features C—H⋯π inter­actions.

5. Synthesis and crystallization

N-Allyl-N-phenyl­acryl­amide (0.30 mmol), 3-iodo­cyclo­hex-2-en-1-one (0.36 mmol), PdCl2(PPh3)2 (5 mol%, 0.015 mmol, 10.5 mg), TCAB (3,4,3′.4′-tetrachloroazobenzene) (10 mol%, 0.03 mmol, 8.33 mg) and K2CO3 (0.36 mmol, 49.68 mg) were stirred in DMSO (5.0 mL) at 403 K in a 20 mL tube under an N2 atmosphere. When the reaction was complete (detected by TLC), the mixture was cooled to room temperature. The reaction was quenched with HCl (5%, 10 mL) and extracted with Et2O (3 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 and then evaporated under vacuum. The residue was purified by column chromatography on silica gel using n-hexa­ne/ethyl acetate (10:1 v:v) as eluent to afford the compound as a white solid. Part of the purified product was redissolved in n-hexa­ne/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days.

Spectroscopic data: IR (film) 2962, 2920, 2885, 1687, 1662, 1619, 1169, 757 cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.64–7.62 (m, 2H), 7.41–7.37 (m, 2H), 7.18–7.15 (m, 1H), 3.96–3.93 (m, 1H), 3.68–3.64 (m, 1H), 2.92–2.90 (m, 1H), 2.64–2.61 (m, 1H), 2.43–2.27 (m, 6H), 2.12–2.09 (m, 2H), 1.10 (s, 3H), 1.03 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 198.8, 173.7, 153.8, 139.6, 130.7, 128.9, 124.4, 119.6, 53.0, 51.4, 45.7, 45.1, 36.6, 33.1, 32.3, 29.4, 27.1, 26.3 ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl) was applied in all case. Atoms C8 and C9 are disordered over two positions (A and B) in a 0.805 (10):0.195 (10) occupancy ratio.

Table 2
Experimental details

Crystal data
Chemical formula C20H23NO2
Mr 309.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 5.7062 (4), 34.009 (3), 8.5042 (8)
β (°) 98.178 (7)
V3) 1633.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.12 × 0.1 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.621, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6736, 2874, 2046
Rint 0.035
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.143, 1.05
No. of reflections 2874
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

7,7-Dimethyl-2-phenyl-3,3a,4,6,7,8,9,9a-octahydro-1H-benzo[f]isoindole-1,5(2H)-dione top
Crystal data top
C20H23NO2F(000) = 664
Mr = 309.39Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7062 (4) ÅCell parameters from 2123 reflections
b = 34.009 (3) Åθ = 2.4–27.9°
c = 8.5042 (8) ŵ = 0.08 mm1
β = 98.178 (7)°T = 200 K
V = 1633.5 (2) Å3Block, colourless
Z = 40.12 × 0.1 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
2874 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2046 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.5368 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 4024
Tmin = 0.621, Tmax = 1.000l = 108
6736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.6477P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2874 reflectionsΔρmax = 0.33 e Å3
229 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The C(8) and C(9) is disordered over two positions, site occupancies were refined. This refinement led to a 0.805 : 0.195 ratio in occupancy over two positions for C(8)and C(9).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0478 (3)0.74574 (5)0.8516 (3)0.0677 (7)
O20.3270 (3)0.58244 (5)0.4595 (2)0.0497 (5)
N10.6935 (3)0.75875 (5)0.6917 (2)0.0319 (5)
C10.6910 (4)0.80046 (6)0.6875 (3)0.0312 (5)
C20.8854 (4)0.82281 (7)0.7539 (3)0.0369 (6)
H21.0219100.8103080.8020340.044*
C30.8762 (4)0.86346 (7)0.7484 (3)0.0414 (6)
H31.0066200.8780400.7933480.050*
C40.6759 (4)0.88257 (8)0.6770 (3)0.0444 (6)
H40.6702040.9098930.6740130.053*
C50.4839 (4)0.86066 (7)0.6099 (3)0.0427 (6)
H50.3485290.8734250.5614040.051*
C60.4895 (4)0.81998 (7)0.6137 (3)0.0377 (6)
H60.3591010.8056340.5671170.045*
C70.5009 (4)0.73534 (7)0.6012 (3)0.0359 (6)
H7AA0.5066870.7367410.4879050.043*0.805 (10)
H7AB0.3467780.7441720.6222990.043*0.805 (10)
H7BC0.4549550.7454030.4945620.043*0.195 (10)
H7BD0.3630480.7335120.6556720.043*0.195 (10)
C80.5547 (7)0.69357 (9)0.6649 (5)0.0308 (10)0.805 (10)
H80.4929690.6909220.7661490.037*0.805 (10)
C90.8232 (7)0.69415 (9)0.6983 (5)0.0314 (10)0.805 (10)
H90.8843440.6923110.5965400.038*0.805 (10)
C100.8715 (4)0.73524 (7)0.7629 (3)0.0436 (6)
C110.9147 (4)0.65947 (6)0.7982 (3)0.0346 (6)
H11A0.8727120.6622010.9042630.042*0.805 (10)
H11B1.0858890.6583420.8067810.042*0.805 (10)
H11C1.0583980.6657810.7547960.042*0.195 (10)
H11D0.9559680.6555440.9117420.042*0.195 (10)
C120.8083 (4)0.62222 (6)0.7226 (3)0.0314 (5)
C130.6101 (4)0.62233 (6)0.6149 (3)0.0320 (5)
C140.4699 (4)0.65896 (6)0.5612 (3)0.0336 (6)
H14A0.4873830.6647450.4517780.040*0.805 (10)
H14B0.3032900.6543970.5662370.040*0.805 (10)
H14C0.3312670.6607460.6149390.040*0.195 (10)
H14D0.4172790.6577410.4476920.040*0.195 (10)
C150.9447 (4)0.58530 (7)0.7721 (3)0.0384 (6)
H15A0.9884610.5858470.8865420.046*
H15B1.0899940.5856360.7252040.046*
C160.8167 (4)0.54667 (7)0.7271 (3)0.0410 (6)
C170.6913 (4)0.55090 (7)0.5575 (3)0.0454 (7)
H17A0.8086610.5542260.4864700.055*
H17B0.6038690.5269730.5271000.055*
C180.5238 (4)0.58520 (7)0.5385 (3)0.0370 (6)
C190.6359 (4)0.53812 (8)0.8399 (4)0.0534 (7)
H19A0.7169040.5347620.9459310.080*
H19B0.5505170.5145300.8066680.080*
H19C0.5270860.5597060.8376050.080*
C200.9935 (4)0.51259 (7)0.7373 (4)0.0546 (8)
H20A1.1073120.5174520.6665740.082*
H20B0.9105900.4885660.7075220.082*
H20C1.0735350.5103890.8441270.082*
C210.733 (3)0.6949 (3)0.766 (2)0.029 (4)0.195 (10)
H210.6136120.6951520.8385860.035*0.195 (10)
C220.633 (3)0.6964 (4)0.602 (2)0.032 (4)0.195 (10)
H220.7579100.6977030.5336540.039*0.195 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0528 (11)0.0479 (12)0.0885 (16)0.0036 (9)0.0382 (11)0.0010 (11)
O20.0419 (10)0.0464 (11)0.0556 (12)0.0054 (8)0.0106 (9)0.0023 (9)
N10.0279 (10)0.0344 (11)0.0323 (11)0.0017 (8)0.0003 (8)0.0006 (9)
C10.0305 (12)0.0376 (13)0.0257 (12)0.0018 (10)0.0050 (9)0.0018 (10)
C20.0308 (12)0.0440 (15)0.0351 (14)0.0022 (10)0.0022 (10)0.0006 (11)
C30.0404 (14)0.0455 (15)0.0379 (15)0.0094 (11)0.0039 (11)0.0036 (12)
C40.0539 (16)0.0395 (14)0.0394 (15)0.0004 (12)0.0056 (12)0.0007 (12)
C50.0424 (14)0.0428 (15)0.0419 (15)0.0069 (11)0.0020 (12)0.0019 (12)
C60.0333 (12)0.0429 (14)0.0358 (14)0.0011 (10)0.0012 (10)0.0022 (11)
C70.0264 (11)0.0390 (14)0.0394 (15)0.0007 (10)0.0051 (10)0.0027 (11)
C80.022 (2)0.0399 (18)0.030 (2)0.0030 (13)0.0017 (16)0.0019 (15)
C90.022 (2)0.0405 (18)0.031 (2)0.0015 (13)0.0032 (16)0.0008 (14)
C100.0362 (13)0.0404 (14)0.0488 (17)0.0015 (11)0.0122 (12)0.0034 (12)
C110.0277 (11)0.0396 (14)0.0348 (14)0.0007 (9)0.0013 (10)0.0007 (11)
C120.0259 (11)0.0365 (13)0.0327 (13)0.0002 (9)0.0072 (10)0.0003 (10)
C130.0275 (11)0.0371 (13)0.0318 (13)0.0006 (9)0.0058 (10)0.0008 (10)
C140.0274 (11)0.0391 (14)0.0327 (14)0.0018 (9)0.0011 (10)0.0007 (11)
C150.0301 (12)0.0413 (14)0.0426 (15)0.0033 (10)0.0008 (10)0.0016 (12)
C160.0328 (13)0.0385 (14)0.0507 (17)0.0037 (10)0.0028 (11)0.0028 (12)
C170.0430 (14)0.0365 (14)0.0545 (18)0.0007 (11)0.0010 (12)0.0057 (13)
C180.0356 (13)0.0407 (14)0.0340 (14)0.0042 (10)0.0020 (11)0.0029 (11)
C190.0433 (15)0.0527 (17)0.064 (2)0.0019 (12)0.0058 (13)0.0148 (14)
C200.0474 (15)0.0400 (15)0.074 (2)0.0076 (12)0.0004 (14)0.0008 (14)
C210.025 (8)0.035 (7)0.031 (9)0.009 (5)0.016 (7)0.005 (6)
C220.034 (9)0.028 (7)0.041 (10)0.008 (5)0.027 (7)0.001 (6)
Geometric parameters (Å, º) top
O1—C101.222 (3)C11—H11C0.9700
O2—C181.228 (3)C11—H11D0.9700
N1—C11.419 (3)C11—C121.509 (3)
N1—C71.481 (3)C11—C211.587 (13)
N1—C101.365 (3)C12—C131.350 (3)
C1—C21.396 (3)C12—C151.505 (3)
C1—C61.397 (3)C13—C141.515 (3)
C2—H20.9300C13—C181.472 (3)
C2—C31.384 (3)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C3—C41.379 (3)C14—H14C0.9700
C4—H40.9300C14—H14D0.9700
C4—C51.379 (3)C14—C221.588 (14)
C5—H50.9300C15—H15A0.9700
C5—C61.384 (3)C15—H15B0.9700
C6—H60.9300C15—C161.525 (3)
C7—H7AA0.9700C16—C171.523 (4)
C7—H7AB0.9700C16—C191.533 (3)
C7—H7BC0.9700C16—C201.531 (3)
C7—H7BD0.9700C17—H17A0.9700
C7—C81.535 (4)C17—H17B0.9700
C7—C221.524 (14)C17—C181.502 (3)
C8—H80.9800C19—H19A0.9600
C8—C91.518 (7)C19—H19B0.9600
C8—C141.509 (4)C19—H19C0.9600
C9—H90.9800C20—H20A0.9600
C9—C101.513 (4)C20—H20B0.9600
C9—C111.503 (4)C20—H20C0.9600
C10—C211.586 (14)C21—H210.9800
C11—H11A0.9700C21—C221.43 (3)
C11—H11B0.9700C22—H220.9800
C1—N1—C7121.36 (17)C13—C12—C15122.8 (2)
C10—N1—C1126.93 (19)C15—C12—C11114.87 (19)
C10—N1—C7111.47 (18)C12—C13—C14124.2 (2)
C2—C1—N1122.0 (2)C12—C13—C18119.5 (2)
C2—C1—C6118.6 (2)C18—C13—C14116.28 (19)
C6—C1—N1119.41 (19)C8—C14—C13110.7 (2)
C1—C2—H2119.8C8—C14—H14A109.5
C3—C2—C1120.4 (2)C8—C14—H14B109.5
C3—C2—H2119.8C13—C14—H14A109.5
C2—C3—H3119.6C13—C14—H14B109.5
C4—C3—C2120.7 (2)C13—C14—H14C109.9
C4—C3—H3119.6C13—C14—H14D109.9
C3—C4—H4120.4C13—C14—C22108.9 (6)
C3—C4—C5119.2 (2)H14A—C14—H14B108.1
C5—C4—H4120.4H14C—C14—H14D108.3
C4—C5—H5119.5C22—C14—H14C109.9
C4—C5—C6121.1 (2)C22—C14—H14D109.9
C6—C5—H5119.5C12—C15—H15A108.3
C1—C6—H6120.0C12—C15—H15B108.3
C5—C6—C1120.0 (2)C12—C15—C16116.00 (19)
C5—C6—H6120.0H15A—C15—H15B107.4
N1—C7—H7AA111.3C16—C15—H15A108.3
N1—C7—H7AB111.3C16—C15—H15B108.3
N1—C7—H7BC112.2C15—C16—C19110.3 (2)
N1—C7—H7BD112.2C15—C16—C20110.48 (19)
N1—C7—C8102.57 (19)C17—C16—C15107.5 (2)
N1—C7—C2297.7 (6)C17—C16—C19110.1 (2)
H7AA—C7—H7AB109.2C17—C16—C20110.0 (2)
H7BC—C7—H7BD109.8C20—C16—C19108.5 (2)
C8—C7—H7AA111.3C16—C17—H17A109.1
C8—C7—H7AB111.3C16—C17—H17B109.1
C22—C7—H7BC112.2H17A—C17—H17B107.9
C22—C7—H7BD112.2C18—C17—C16112.4 (2)
C7—C8—H8108.4C18—C17—H17A109.1
C9—C8—C7101.5 (3)C18—C17—H17B109.1
C9—C8—H8108.4O2—C18—C13122.0 (2)
C14—C8—C7119.0 (3)O2—C18—C17121.2 (2)
C14—C8—H8108.4C13—C18—C17116.8 (2)
C14—C8—C9110.5 (4)C16—C19—H19A109.5
C8—C9—H9108.1C16—C19—H19B109.5
C10—C9—C8101.9 (3)C16—C19—H19C109.5
C10—C9—H9108.1H19A—C19—H19B109.5
C11—C9—C8110.8 (4)H19A—C19—H19C109.5
C11—C9—H9108.1H19B—C19—H19C109.5
C11—C9—C10119.3 (3)C16—C20—H20A109.5
O1—C10—N1126.8 (2)C16—C20—H20B109.5
O1—C10—C9125.9 (2)C16—C20—H20C109.5
O1—C10—C21127.6 (5)H20A—C20—H20B109.5
N1—C10—C9107.1 (2)H20A—C20—H20C109.5
N1—C10—C21100.0 (5)H20B—C20—H20C109.5
C9—C11—H11A109.8C10—C21—H21113.3
C9—C11—H11B109.8C11—C21—C10110.2 (10)
C9—C11—C12109.4 (2)C11—C21—H21113.3
H11A—C11—H11B108.2C22—C21—C1094.6 (12)
H11C—C11—H11D108.1C22—C21—C11110.6 (14)
C12—C11—H11A109.8C22—C21—H21113.3
C12—C11—H11B109.8C7—C22—C14114.8 (10)
C12—C11—H11C109.5C7—C22—H22111.1
C12—C11—H11D109.5C14—C22—H22111.1
C12—C11—C21110.6 (5)C21—C22—C799.4 (13)
C21—C11—H11C109.5C21—C22—C14108.8 (14)
C21—C11—H11D109.5C21—C22—H22111.1
C13—C12—C11122.3 (2)
O1—C10—C21—C1141.8 (15)C10—N1—C7—C2213.4 (8)
O1—C10—C21—C22155.8 (9)C10—C9—C11—C12169.8 (3)
N1—C1—C2—C3179.6 (2)C10—C21—C22—C758.3 (14)
N1—C1—C6—C5179.5 (2)C10—C21—C22—C14178.7 (7)
N1—C7—C8—C933.0 (4)C11—C9—C10—O132.6 (6)
N1—C7—C8—C14154.5 (3)C11—C9—C10—N1153.1 (3)
N1—C7—C22—C14162.6 (11)C11—C12—C13—C141.6 (3)
N1—C7—C22—C2146.7 (14)C11—C12—C13—C18176.29 (19)
N1—C10—C21—C11163.7 (8)C11—C12—C15—C16167.2 (2)
N1—C10—C21—C2249.7 (14)C11—C21—C22—C7171.9 (7)
C1—N1—C7—C8170.1 (3)C11—C21—C22—C1467.7 (19)
C1—N1—C7—C22161.4 (8)C12—C11—C21—C10151.1 (7)
C1—N1—C10—O19.5 (4)C12—C11—C21—C2247.8 (17)
C1—N1—C10—C9164.7 (3)C12—C13—C14—C810.3 (4)
C1—N1—C10—C21164.3 (7)C12—C13—C14—C2219.4 (8)
C1—C2—C3—C40.3 (3)C12—C13—C18—O2168.4 (2)
C2—C1—C6—C51.2 (3)C12—C13—C18—C1713.5 (3)
C2—C3—C4—C50.3 (4)C12—C15—C16—C1742.8 (3)
C3—C4—C5—C60.2 (4)C12—C15—C16—C1977.2 (3)
C4—C5—C6—C10.6 (3)C12—C15—C16—C20162.8 (2)
C6—C1—C2—C31.0 (3)C13—C12—C15—C1614.9 (3)
C7—N1—C1—C2171.0 (2)C13—C14—C22—C7162.6 (9)
C7—N1—C1—C68.4 (3)C13—C14—C22—C2152.3 (17)
C7—N1—C10—O1176.1 (3)C14—C8—C9—C10165.6 (2)
C7—N1—C10—C99.7 (3)C14—C8—C9—C1166.4 (5)
C7—N1—C10—C2121.3 (7)C14—C13—C18—O213.5 (3)
C7—C8—C9—C1038.4 (5)C14—C13—C18—C17164.6 (2)
C7—C8—C9—C11166.4 (2)C15—C12—C13—C14179.4 (2)
C7—C8—C14—C13159.4 (3)C15—C12—C13—C181.4 (3)
C8—C9—C10—O1155.0 (3)C15—C16—C17—C1856.9 (2)
C8—C9—C10—N130.7 (4)C16—C17—C18—O2137.6 (2)
C8—C9—C11—C1252.0 (5)C16—C17—C18—C1344.2 (3)
C9—C8—C14—C1342.5 (5)C18—C13—C14—C8171.7 (3)
C9—C11—C12—C1319.3 (4)C18—C13—C14—C22158.6 (8)
C9—C11—C12—C15158.6 (3)C19—C16—C17—C1863.3 (3)
C10—N1—C1—C22.9 (3)C20—C16—C17—C18177.2 (2)
C10—N1—C1—C6177.7 (2)C21—C11—C12—C1313.7 (8)
C10—N1—C7—C815.1 (3)C21—C11—C12—C15168.4 (8)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.242.864 (3)124
C3—H3···O2i0.932.533.4513 (3)170
C11—H11A···Cg3ii0.972.733.688 (3)168
C11—H11D···Cg3ii0.972.953.688 (3)134
C14—H14A···Cg3iii0.972.703.609 (3)156
C14—H14D···Cg3iii0.972.903.609 (3)131
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Funding information

Funding for this research was provided by: the Key Natural Science Foundation of Anhui Higher Education Institution (scholarship No. KJ2017A446); the Excellent Young Talents Support Program of Anhui Higher Education Institutions (scholarship No. gxyq2018075); Innovation and entrepreneurship project of college students in Anhui Province (studentship No. PX-36217095).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationU.Florke (2019). CSD Communication (CCDC 1893073). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc21jwwc  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacques, J., Collet, A. & Wilen, S. (1994). Enantiomers, Racemates, and Resolutions. New York: John Wiley & Sons.  Google Scholar
First citationJana, K., Mizota, I. & Studer, A. (2021). Org. Lett. 23, 1280–1284.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJash, M., De, S., Pramanik, S. & Chowdhury, C. (2019). J. Org. Chem. 84, 8959–8975.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnowles, J. P., Steeds, H. G., Schwarz, M., Latter, F. & Booker-Milburn, K. I. (2021). Org. Lett. 23, 4986–4990.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrafft, M., Seibert, K., Haxell, T. & Hirosawa, C. (2005). Chem. Commun. pp. 5772–5774.  Web of Science CrossRef Google Scholar
First citationMa, S. & Gu, Z. (2006). J. Am. Chem. Soc. 128, 4942–4943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMuimhneacháin, E. Ó., Pardo, L. M., Bateman, L. M., Rao Khandavilli, U. B., Lawrence, S. E. & McGlacken, G. P. (2017). Adv. Synth. Catal. 359, 1529–1534.  Google Scholar
First citationNicolaou, K. C., Edmonds, D. J. & Bulger, P. G. (2010). Angew. Chem. Int. Ed. 45, 7134–7186.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, R. & Huang, X. (2008). Org. Lett. 10, 3283–3286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrvstalExplorer17.The University of Western Australia.  Google Scholar
First citationXie, X. & She, X. (2021). Chin. J. Chem. 39, 795–801.  Web of Science CrossRef CAS Google Scholar
First citationZhang, C., Yu, S. B., Hu, X. P., Wang, D. Y. & Zheng, Z. (2010). Org. Lett. 12, 5542–5545.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, P., Zeng, J., Pan, P., Zhang, X. J. & Yan, M. (2022). Org. Lett. 24, 536–541.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds