research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of silver strontium copper orthophosphate, AgSr4Cu4.5(PO4)6

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: j_khmiyas@yahoo.fr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 9 December 2019; accepted 6 January 2020; online 10 January 2020)

Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydro­thermal process. The asymmetric unit of the crystal structure of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetra­hedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model.

1. Chemical context

The growing role of metal orthophosphates based on PO4 and MOn (where M is a metal cation) structural units is closely related to their ability to adopt different spatial arrangements. As has been pointed out previously, their physical and chemical properties, dynamic flexibility attributes and structural behaviour (Hadrich et al., 2001[Hadrich, A., Lautié, A. & Mhiri, T. (2001). Spectrochim. Acta Part A, 57, 1673-1681.]) can be correlated with the ionic radius of the metal cation (Jeżowska-Trzebiatowska et al., 1980[Jeżowska-Trzebiatowska, B., Mazurak, Z. & Lis, T. (1980). Acta Cryst. B36, 1639-1641.]). Furthermore, the ability of these metal cations to adopt different oxidation states as well as various coordination environments leads, in general, to open anionic three-dimensional frameworks. The structures of these classes of materials can easily accommodate a great variety of substituents, anionic and/or cationic, which can have a significant effect on the stability and on the morphology of structures and crystals, as is shown particularly in the apatite family (LeGeros & Tung, 1983[LeGeros, R. Z. & Tung, M. S. (1983). Caries Res. 17, 419-429.]) for which a considerable number of complex and versatile networks were described systematically. Open frameworks involved with various cavities such tunnels or cages, especially in phosphates containing mono, di and trivalent cations, are of particular inter­est owing to their potential applications in catalysis (Badrour et al., 2001[Badrour, L., Oukerroum, J., Amenzou, H., Bensitel, M., Sadel, A. & Zahir, M. (2001). Ann. Chim. Sci. Mat. 26, 6, 131-138.]) and as immobilizing carriers for various enzymes, e.g. CaTi4(PO4)6 (Suzuki et al., 1991[Suzuki, T., Toriyama, M., Hosono, H. & Abe, Y. (1991). J. Ferment. Bioeng. 72, 5, 384-391.]) as well as for their photocatalytic activities in glass-ceramics containing MgTi4(PO4)6 crystals (Fu, 2014[Fu, J. (2014). Mater. Lett. 118, 84-87.]) and ionic-conductivity properties with Cal-xNa2xTi4(PO4)6 belonging to the Nasicon structure type (Mentre & Abraham, 1994[Mentre, O., Abraham, F., Deffontaines, B. & Vast, P. (1994). Solid State Ionics, 72, 293-299.]). Much attention has been paid to compounds containing six PO4 tetra­hedral units with different transition metal/phosphate ratios, e.g. Na4CaFe4(PO4)6 which adopts the Alluaudite structure in the ideal C2/c space group (Hidouri et al., 2004[Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2004). J. Solid State Chem. 177, 55-60.]), Ba3V4(PO4)6 which crystallizes as a Langbeinite-type structure (Dross & Glaum, 2004[Droß, T. & Glaum, R. (2004). Acta Cryst. E60, i58-i60.]), CuTi4(PO4)6 which belongs to the Nasicon family (Kasuga et al., 1999[Kasuga, T., Yamamoto, K., Tsuzuki, T., Nogami, M. & Abe, Y. (1999). Mater. Res. Bull. 34, 10-11, 1595-1600.]), the silver lead apatite Pb8Ag2(PO4)6 (Ternane et al., 2000[Ternane, R., Ferid, M., Kbir-Ariguib, N. & Trabelsi-Ayedi, M. (2000). J. Alloys Compd. 308, 83-86.]), the mixed-valent iron(II/III) phosphate Fe7(PO4)6 (Belik et al., 2000[Belik, A. A., Malakho, A. P., Pokholok, K. V., Lazoryak, B. I. & Khasanov, S. S. (2000). J. Solid State Chem. 150, 159-166.]) and Na2.5Y0.5Mg7(PO4)6 with a Fillowite-type structure (Jerbi et al., 2010[Jerbi, H., Hidouri, M. & Ben Amara, M. (2010). J. Rare Earths, 28, 481-487.]). Through hydro­thermal processes, and as part of our systematic studies of the crystal alkaline and alkaline earth monophosphates, we have previously succeeded in elaborating a number of compounds with three-dimensional networks featuring distinctive cavities including AgMg3(HPO4)2PO4 (Assani et al., 2011[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5.]), Sr2Mn3(HPO4)2(PO4)2 (Khmiyas et al., 2013[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i50.]), SrMn2IIMnIII(PO4)3 (Alhakmi et al., 2013[Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013). Acta Cryst. E69, i56.]), NaMg3(HPO4)2PO4 (Ould Saleck et al., 2015[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813-815.]). In an extension of our investigations and structural studies of various mono-divalent transition-metal phosphates a new phosphate copper (CuII)-based AgSr4Cu4.5(PO4)6 was prepared and successfully characterized. Charge-distribution (CHARDI) (Nespolo et al., 2001[Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652-664.]) and bond-valence-sum (BVS) calculations were used for validating the structural model. A careful examination of the literature as well as various databases reveals that the title compound AgSr4Cu4.5(PO4)6 is original and furthermore is not related to any family of reported compounds.

2. Structural commentary

The principal building units of the crystal structure of AgSr4Cu4.5(PO4)6 are more or less distorted polyhedra (AgO5, CuO4, CuO5, SrO8, SrO9) and nearly regular PO4 tetra­hedra, as shown in Fig. 1[link]. In this structure, the copper atoms adopt two different environments: CuO4 and CuO5. Indeed, Cu1 and Cu2 exhibit a coordination sphere of four oxygen atoms, forming a flattened parallelogram for Cu1O4 and a distorted square plane for Cu2O4. The other copper atoms Cu3, Cu4 and Cu5 each occupy the centers of CuO5 square-based pyramids. A close inspection of the geometrical parameters of Cu3O5, Cu4O5 and Cu5O5 polyhedra reveals that the latter exhibit significant distortion. The phospho­rus atoms are tetra­hedrally coordinated with bond lengths and angles close to those reported for P5+ for this geometry. The crystal-structure framework of AgSr4Cu4.5(PO4)6 can be viewed as a three-dimensional network of corner-sharing CuOn (n = 4 or 5) units, thereby forming two types of [Cu3O12]18− trimers. The first trimer results from the zigzag succession in the following order Cu(4)O5 – Cu(2)O4 – Cu(5)O5. Similarly, the second type of trimer is built up from two-vertex-sharing of a single polyhedra, Cu1O4, sandwiched by two neighbouring Cu3O5 entities as shown in Fig. 2[link]. Each oxygen atom of both trimers is connected to a nearly regular PO4 tetra­hedron in such a way as to form two different [Cu3P10O40]24− ribbons (see Fig. 3[link] and 4[link]). These adjacent ribbons are linked together through the PO4 tetra­hedra, thus building a layer-like [Cu4.5(PO4)6]9− arrangement perpendicular to the [100] direction as shown in Fig. 5[link].

[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y + 1, −z; (iii) x, y + 1, z; (iv) x − 1, y, z; (v) −x + 1, −y + 1, −z + 1; (vi) x + 1, y, z; (vii) x, y − 1, z; (viii) −x, −y, −z + 1; (ix) −x, −y + 1, −z + 1.
[Figure 2]
Figure 2
Vertex-sharing [CuO5] and CuO4 polyhedra forming two [Cu3O12] trimers.
[Figure 3]
Figure 3
A ribbon, resulting from a Cu3O5–Cu1O4–Cu3O5 trimer connection via vertices of PO4 tetra­hedra.
[Figure 4]
Figure 4
A [Cu3O12] trimer linked to PO4 through corners to build up a ribbon involving Cu4O5–Cu2O4–Cu5O5.
[Figure 5]
Figure 5
A [Cu3O12] trimer linked to PO4 through corners to form a layer parallel to the (100) plan.

Crystal cohesion and the junction between the stacked layers along the a-axis direction are ensured by ionic bonds involving the Sr2+ and Ag+ cations as shown in Fig. 6[link]. The insertion of these mono and bivalent cations generates strong inter­actions inducing, consequently, a morphological deformation of the inter­layer space, which explains the manifestation of the distorted sites. This result is confirmed by the CHARDI analysis of the coordination polyhedra by means of the effective coordination number (ECoN; Nespolo, 2016[Nespolo, M. (2016). Acta Cryst. B72, 51-66.]). The distortion of the metal–oxygen polyhedron becomes stronger when the ECoN value deviates further from the habitual coordination number (CN). This structural particularity is clearly noticeable when examining the numerical values of ECoN and CN for the various SrOn (n = 8 and 9) and AgO5 polyhedra. The differences ECoN (Sr1)/CN(Sr1) = 7.61/8, ECoN (Sr2)/CN(Sr2) = 6.96/8 and ECoN (Sr3)/CN(Sr3) = 6.8/8, reveal an increased distortion in the SrO8 groups ranging from the Sr1O8 to Sr3O8 polyhedra. The Sr2 atom is formally nine-coordinate with bond lengths varying from 2.480 (2) to 2.890 (2) Å. The site hosting Sr4 is very flexible and bulky, resulting in a greatly deformed SrO9 polyhedron. The geometry ratio ECoN (Ag1)/CN(Ag1) = 3.93/5 of the Ag1O5 polyhedron indicates a distorted square-pyramidal coordination environment. This behaviour can be attributed to the edge or face-sharing between these polyhedral units. This modality of linkage, as well as the ionic radius of Sr2+ and Ag+, induces a strong cation–cation electrostatic repulsion, which is reflected in the inter­atomic distances and consequently on the repetition of the ionic charge and bond-valence-sum (BVS) values.

[Figure 6]
Figure 6
Three dimensional view of AgSr4Cu4.5(PO4)6 crystal structure showing Sr2+ and Ag+ between layers stacked along the [100] direction.

The CHARDI analysis method gives the distribution of calculated ECoN numbers of a central cation among all the neighbouring anions (Hoppe, 1979[Hoppe, R. (1979). Z. Kristallogr. 150, 23-52.]). The calculation of this number is related directly to the distribution of charges in crystalline structures. The measure of the correctness of the structure (cation ratio) and of the degree of over or under bonding (anion ratio) is performed via the evaluation of the inter­nal criterion q/Q (where q is the formal oxidation number and Q the computed charge). The charge-distribution method (CD or CHARDI), developed by Hoppe et al. (1989[Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105-122.]), and the bond –valence (BVS) approach introduced to predict bond lengths in inorganic crystals (Brown, 1977[Brown, I. D. (1977). Acta Cryst. B33, 1305-1310.], 1978[Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.]) provide powerful tools for analysis of the connectivity of crystal structures and the validation of structural models. In the present study, both validation tools, BVS and CHARDI, are applied to the structural model of the title compound. Generally, for a well-refined structure, the calculated valences V(i) obtained by the BVS model and the computed charge Q(i) according to the CHARDI analysis must be in close agreement with the oxidation number of the atoms. The CHARDI computations were carried out with the CHARDI2015 program (Nespolo & Guillot, 2016[Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317-321.]), while BVS was calculated using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). In the asymmetric unit, all atoms are located on general positions (Wyckoff position 2i) of space group P[\overline{1}] except for Cu1, which is located on a special position (Wyckoff position 1a). The distribution of the electric charges at the 40 crystallographic sites of the asymmetric unit shows that the Ag+, Sr2+, Cu2+ and P5+ cations fully occupy 16 sites. Otherwise, charge neutrality requires the location of 24 oxygen atoms in the remaining 2i sites. The first results of BVS calculations for Sr3 suggest a valence V(Sr3) = 1.900 v.u. for a coordination number CN = 7. This result can be significantly improved by widening the coordination sphere to 3.1410 Å, which allows the integration of a supplemental oxygen, thus inducing valence V(Sr3) = 1.962 v.u. The analysis of the data summarized in Table 1[link] reveals that the values obtained from charges Q(i) and bond-valence sums V(i) of the cations are all compatible with the weighted oxidation number q(i)·sof(i). The minor deviations reported from these parameters with respect to the formal oxidation state are closely related to the distortion level of the occupied sites. Despite these irregularities, all the values of the inter­nal criterion q(i)/Q(i) are very close to unity, which confirms the validity of the structural model obtained from the X-ray diffraction data. The convergence of the CHARDI model is evaluated by the mean absolute percentage deviation (MAPD) as shown in the equation below, which measures the agreement between q(i) and Q(i) for the whole sets of PC atoms (polyhedron-centring atoms) and of V atoms (the vertex atoms) (Eon & Nespolo, 2015[Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34-47.]). For the cationic charges in the structure, we report that the calculated value of MAPD is only 1.7%.

[{\rm MAPD} = {100\over N}\sum_{i=1}^{N}\bigg|{{q(i) - Q(i)}\over{q(i)}}\bigg|]

where N is the number of polyhedron-centring or vertex atoms in the asymmetric unit.

Table 1
CHARDI and BVS analysis for the cations in the title compound

q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.

Cation q(i)·sof(i) CN(i) ECoN(i) V(i) Q(i) q(i)/Q(i)
Ag1 1 5 3.93 0.998 1.02 0.98
Sr1 2 8 7.61 2.125 2.03 0.98
Sr2 2 8 6.96 2.308 1.99 1.00
Sr3 2 8 6.80 1.962 1.98 1.01
Sr4 2 9 8.07 2.248 2.01 0.99
Cu1 2 4 3.97 1.765 1.92 1.04
Cu2 2 4 3.97 2.000 1.96 1.02
Cu3 2 5 4.55 2.050 1.94 1.03
Cu4 2 5 4.37 2.039 2.00 1.00
Cu5 2 5 4.25 1.957 1.94 1.03
P1 5 4 3.97 4.892 4.91 1.02
P2 5 4 4.00 4.962 5.20 0.96
P3 5 4 3.97 4.974 4.98 1.00
P4 5 4 3.99 4.944 5.04 0.99
P5 5 4 3.97 4.939 4.93 1.01
P6 5 4 3.99 5.016 5.10 0.98

The calculated anionic charges Q(i) of oxygen show a lowest deviation of the order of 4.5% with respect to q(i). These values of MAPD show that the dual description as cation-centred and anion-centred is satisfactory and adequate for the studied structural model. The ratio q(i)/Q(i) is approximately equal to 1 in most cases (Table 2[link]), with some exceptions: q(O8)/Q(O8) = 1.16, q(O12)/Q(O12) = 0.92 and q(O22)/Q(O22) = 1.15. This anomaly of negative-charge repetition could be due to the OUB effect (over–under bonding effect) (Nespolo et al., 1999[Nespolo, M., Ferraris, G. & Ohashi, H. (1999). Acta Cryst. B55, 902-916.]), which results from the repulsive inter­actions of the cations located at the centre of the polyhedra. Therefore the anionic charges of oxygen deviate slightly from the ideal value −2. This also explains the variation of cation–anion distances in the various polyhedra in the crystal structure of AgSr4Cu4.5(PO4)6.

Table 2
CHARDI calculation for the oxygen anions in the title compound

Atom sof(i) q(i) Q(i) q(i)/Q(i)
O1 1 −2 −2.02 0.99
O2 1 −2 −2.07 0.97
O3 1 −2 −1.98 1.01
O4 1 −2 −2.08 0.96
O5 1 −2 −2.12 0.94
O6 1 −2 −1.85 1.08
O7 1 −2 −2.05 0.97
O8 1 −2 −1.73 1.16
O9 1 −2 −1.90 1.05
O10 1 −2 −2.09 0.96
O11 1 −2 −1.92 1.04
O12 1 −2 −2.18 0.92
O13 1 −2 −2.06 0.97
O14 1 −2 −2.00 1.00
O15 1 −2 −1.98 1.01
O16 1 −2 −1.91 1.05
O17 1 −2 −2.05 0.98
O18 1 −2 −1.91 1.05
O19 1 −2 −2.09 0.96
O20 1 −2 −2.09 0.96
O21 1 −2 −2.12 0.94
O22 1 −2 −1.74 1.15
O23 1 −2 −2.05 0.97
O24 1 −2 −2.00 1.00

The plausibility of a crystal-structure model may also be tested by the global instability index (GII) (Salinas-Sanchez et al., 1992[Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201-211.]). The calculated value of the GII index measures the deviation of the bond-valence sums from the formal valence Vi averaged over all N atoms of the asymmetric unit. For an unstrained structure, GII is below 0.1 v.u. and may approach 0.2 v.u. in a structure with lattice-induced strains (Adams et al., 2004[Adams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281-290.]). Values larger than 0.2 v.u. are typically taken as an indication of the presence of intrinsic strains strong enough to cause instability of the crystal structure (Brown, 1992[Brown, I. D. (1992). Z. Kristallogr. 199, 255-272.]). For the crystal structure of the title compound, GII = 0.0944, which indicates high stability and rigidity of the proposed structural model.

3. Database survey

A search in the ICSD database shows that no compounds are currently known in the quaternary system AgO/SrO/CuO/P2O5. The same is true within the AgO/SrO/P2O5 ternary system. However, one compound is known in the AgO/CuO/P2O5 ternary system, viz. β-AgCuPO4 which crystallizes in the Pbca space group (Quarton & Oumba, 1983[Quarton, M. & Oumba, M. T. (1983). Mater. Res. Bull. 18, 967-974.]). There are seven compounds known in the ternary SrO/CuO/P2O5 system, viz. Sr9.1Cu1.4(PO4)7, Sr3Cu3(PO4)4 (Belik et al., 2002[Belik, A. A., Malakho, A. P., Lazoryak, B. I. & Khasanov, S. S. (2002). J. Solid State Chem. 163, 121-131.]; Effenberger, 1999[Effenberger, H. (1999). J. Solid State Chem. 142, 6-13.]), Sr2.88Cu3.12(PO4)4 (Karanović et al., 2010[Karanović, L., Šutović, S., Poleti, D., Đorđević, T. & Pačevski, A. (2010). Acta Cryst. C66, i42-i44.]), Sr5(CuO2)0.333(PO4)3 (Kazin et al., 2003[Kazin, P. E., Karpov, A. S., Jansen, M., Nuss, J. & Tretyakov, Y. D. (2003). Z. Anorg. Allg. Chem. 629, 344-352.]), Sr2Cu(PO4)2, SrCu2(PO4)2 (Belik et al., 2005[Belik, A. A., Azuma, M., Matsuo, A., Whangbo, M. H., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2005). Inorg. Chem. 44, 6632-6640.]) and SrCu(P2O7) (Moqine et al., 1993[Moqine, A., Boukhari, A., Elammari, L. & Durand, J. (1993). J. Solid State Chem. 107, 368-372.]). There is no apparent relation between the structures of these compounds and that of the title compound AgSr4Cu4.5(PO4)6.

4. Synthesis and crystallization

Single crystals of the title compound were obtained using the hydro­thermal method with the following mixture of reagents: silver nitrate, strontium nitrate, metallic copper and 85wt% phospho­ric acid in a proportion corresponding to the molar ratio Ag:Cu:Sr:P = 1:3:1:3. The hydro­thermal reaction was conducted in a 23 mL Teflon-lined autoclave with 12 mL of distilled water under autogenous pressure. The vessel was heated to 473 K for 4 d. After being filtered off, washed with distilled water and dried in air, the reaction product consisted of a light-blue crystals in various forms corresponding to the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The refinement of the occupation of all atom sites shows full occupancy and leads to the stoichiometric formula AgSr4Cu4.5(PO4)6. However, the difference-Fourier map shows two electron-density peaks of intensity 4.05 and −3.87 e Å−3 located at 0.63 and 0.59 Å from Ag1, respectively. These rather strong peaks could not be removed using a different integration strategy or another absorption model.

Table 3
Experimental details

Crystal data
Chemical formula AgCu4.50O24P6Sr4
Mr 1314.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.1070 (1), 9.1514 (1), 13.7259 (2)
α, β, γ (°) 97.498 (1), 98.303 (1), 110.875 (1)
V3) 1036.97 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 16.22
Crystal size (mm) 0.30 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker X8 APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.496, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 32671, 8573, 7465
Rint 0.028
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.03
No. of reflections 8573
No. of parameters 359
Δρmax, Δρmin (e Å−3) 4.05, −3.87
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Silver strontium copper orthophosphate top
Crystal data top
AgCu4.50O24P6Sr4Z = 2
Mr = 1314.08F(000) = 1223
Triclinic, P1Dx = 4.209 Mg m3
a = 9.1070 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1514 (1) ÅCell parameters from 8573 reflections
c = 13.7259 (2) Åθ = 2.4–35.0°
α = 97.498 (1)°µ = 16.22 mm1
β = 98.303 (1)°T = 296 K
γ = 110.875 (1)°Block, light blue
V = 1036.97 (2) Å30.30 × 0.27 × 0.21 mm
Data collection top
Bruker X8 APEXII
diffractometer
8573 independent reflections
Radiation source: fine-focus sealed tube7465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 35.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.496, Tmax = 0.747k = 1214
32671 measured reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0206P)2 + 3.8655P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.059Δρmax = 4.05 e Å3
S = 1.03Δρmin = 3.87 e Å3
8573 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
359 parametersExtinction coefficient: 0.00083 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.60647 (3)0.58776 (4)0.10399 (2)0.02934 (7)
Sr10.28824 (3)0.81800 (3)0.01654 (2)0.00676 (5)
Sr20.07030 (3)0.54033 (3)0.33636 (2)0.00652 (5)
Sr30.63381 (3)0.17215 (3)0.32562 (2)0.00823 (5)
Sr40.87164 (3)0.85230 (3)0.35406 (2)0.00832 (5)
Cu10.0000000.0000000.0000000.00876 (9)
Cu20.19756 (4)0.43833 (4)0.10393 (2)0.00679 (6)
Cu30.17555 (4)0.05281 (4)0.22039 (2)0.00602 (6)
Cu40.35439 (4)0.35727 (4)0.32546 (2)0.00693 (6)
Cu50.51284 (4)0.24192 (4)0.54770 (2)0.00725 (6)
P10.00318 (8)0.17911 (8)0.20922 (5)0.00451 (11)
P20.93662 (8)0.60245 (8)0.11620 (5)0.00507 (11)
P30.24288 (8)0.92189 (8)0.44052 (5)0.00544 (11)
P40.44974 (8)0.78964 (8)0.23844 (5)0.00542 (11)
P50.37042 (8)0.20301 (8)0.11200 (5)0.00480 (11)
P60.69847 (8)0.54683 (8)0.45908 (5)0.00475 (11)
O10.1628 (2)0.3232 (2)0.22180 (14)0.0064 (3)
O20.0314 (2)0.0493 (2)0.25727 (15)0.0091 (3)
O30.1119 (2)0.2403 (2)0.26131 (15)0.0093 (3)
O40.0762 (2)0.1176 (2)0.09618 (14)0.0092 (3)
O51.0559 (3)0.5276 (3)0.15350 (15)0.0128 (4)
O60.8509 (3)0.6235 (3)0.20225 (15)0.0112 (4)
O70.8129 (2)0.4854 (2)0.02384 (14)0.0092 (4)
O81.0258 (3)0.7603 (2)0.08664 (15)0.0116 (4)
O90.3837 (2)1.0680 (2)0.43059 (15)0.0106 (4)
O100.2988 (2)0.7963 (2)0.48272 (14)0.0089 (3)
O110.1335 (3)0.9560 (3)0.50496 (16)0.0129 (4)
O120.1398 (2)0.8387 (2)0.33335 (13)0.0065 (3)
O130.3714 (2)0.9110 (2)0.21547 (14)0.0087 (3)
O140.6258 (2)0.8917 (2)0.28321 (16)0.0107 (4)
O150.4209 (3)0.6805 (2)0.13724 (14)0.0099 (4)
O160.3742 (2)0.6848 (2)0.31152 (14)0.0089 (3)
O170.3381 (3)0.3334 (2)0.06366 (15)0.0094 (4)
O180.4811 (3)0.1406 (2)0.06409 (16)0.0108 (4)
O190.4412 (2)0.2650 (2)0.22584 (14)0.0092 (4)
O200.2067 (2)0.0587 (2)0.09995 (14)0.0070 (3)
O210.6559 (2)0.6837 (2)0.42809 (15)0.0094 (3)
O220.8374 (3)0.5349 (3)0.41485 (16)0.0160 (4)
O230.7430 (2)0.5693 (2)0.57441 (14)0.0090 (3)
O240.5494 (2)0.3884 (2)0.42094 (14)0.0083 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01409 (12)0.04266 (17)0.03685 (16)0.01756 (12)0.00787 (11)0.00447 (13)
Sr10.00637 (10)0.00740 (10)0.00765 (10)0.00327 (8)0.00283 (8)0.00199 (8)
Sr20.00621 (10)0.00615 (10)0.00775 (10)0.00271 (8)0.00232 (8)0.00124 (7)
Sr30.00784 (11)0.00971 (10)0.00884 (10)0.00481 (9)0.00298 (8)0.00198 (8)
Sr40.00637 (11)0.01015 (11)0.01038 (10)0.00413 (9)0.00398 (8)0.00341 (8)
Cu10.0054 (2)0.0135 (2)0.00640 (18)0.00484 (17)0.00058 (15)0.00297 (16)
Cu20.00818 (15)0.00827 (14)0.00676 (13)0.00519 (12)0.00333 (11)0.00329 (10)
Cu30.00630 (14)0.00746 (13)0.00649 (13)0.00409 (11)0.00282 (11)0.00295 (10)
Cu40.00585 (14)0.00973 (14)0.00516 (12)0.00403 (11)0.00015 (10)0.00060 (10)
Cu50.00636 (14)0.00897 (14)0.00652 (13)0.00391 (11)0.00033 (11)0.00019 (10)
P10.0042 (3)0.0048 (3)0.0052 (2)0.0022 (2)0.0016 (2)0.0010 (2)
P20.0043 (3)0.0056 (3)0.0050 (2)0.0017 (2)0.0006 (2)0.0011 (2)
P30.0046 (3)0.0056 (3)0.0058 (3)0.0020 (2)0.0006 (2)0.0001 (2)
P40.0047 (3)0.0063 (3)0.0053 (3)0.0024 (2)0.0007 (2)0.0012 (2)
P50.0042 (3)0.0051 (3)0.0054 (2)0.0018 (2)0.0018 (2)0.0010 (2)
P60.0043 (3)0.0060 (3)0.0048 (2)0.0024 (2)0.0017 (2)0.0016 (2)
O10.0043 (8)0.0073 (8)0.0071 (8)0.0017 (6)0.0007 (6)0.0020 (6)
O20.0109 (9)0.0090 (8)0.0119 (8)0.0065 (7)0.0058 (7)0.0056 (7)
O30.0081 (9)0.0080 (8)0.0137 (9)0.0042 (7)0.0056 (7)0.0016 (7)
O40.0083 (9)0.0128 (9)0.0067 (8)0.0059 (7)0.0001 (7)0.0005 (7)
O50.0156 (10)0.0221 (11)0.0095 (8)0.0159 (9)0.0041 (7)0.0058 (8)
O60.0088 (9)0.0165 (10)0.0098 (8)0.0063 (8)0.0038 (7)0.0011 (7)
O70.0097 (9)0.0065 (8)0.0071 (8)0.0004 (7)0.0015 (7)0.0002 (6)
O80.0122 (10)0.0079 (8)0.0110 (9)0.0011 (7)0.0034 (7)0.0023 (7)
O90.0091 (9)0.0083 (8)0.0096 (8)0.0017 (7)0.0013 (7)0.0006 (7)
O100.0104 (9)0.0114 (9)0.0080 (8)0.0072 (7)0.0019 (7)0.0038 (7)
O110.0112 (10)0.0164 (10)0.0120 (9)0.0067 (8)0.0040 (7)0.0004 (7)
O120.0061 (8)0.0075 (8)0.0052 (7)0.0020 (7)0.0002 (6)0.0018 (6)
O130.0092 (9)0.0110 (9)0.0095 (8)0.0069 (7)0.0027 (7)0.0043 (7)
O140.0063 (9)0.0086 (8)0.0157 (9)0.0020 (7)0.0011 (7)0.0032 (7)
O150.0102 (9)0.0124 (9)0.0073 (8)0.0061 (7)0.0005 (7)0.0014 (7)
O160.0084 (9)0.0106 (8)0.0069 (8)0.0023 (7)0.0011 (7)0.0035 (6)
O170.0112 (9)0.0090 (8)0.0125 (9)0.0063 (7)0.0067 (7)0.0055 (7)
O180.0102 (9)0.0108 (9)0.0152 (9)0.0063 (7)0.0077 (7)0.0028 (7)
O190.0079 (9)0.0128 (9)0.0063 (8)0.0051 (7)0.0007 (7)0.0018 (7)
O200.0049 (8)0.0061 (8)0.0081 (8)0.0004 (6)0.0001 (6)0.0017 (6)
O210.0094 (9)0.0088 (8)0.0132 (9)0.0048 (7)0.0048 (7)0.0063 (7)
O220.0108 (10)0.0293 (12)0.0141 (9)0.0117 (9)0.0087 (8)0.0067 (9)
O230.0108 (9)0.0137 (9)0.0048 (7)0.0076 (7)0.0007 (7)0.0015 (6)
O240.0068 (8)0.0070 (8)0.0095 (8)0.0020 (7)0.0012 (7)0.0007 (6)
Geometric parameters (Å, º) top
Ag1—O152.220 (2)Cu2—O171.951 (2)
Ag1—O62.319 (2)Cu2—O7i1.9723 (19)
Ag1—O17i2.565 (2)Cu2—O12.0450 (19)
Ag1—O172.630 (2)Cu2—O152.348 (2)
Ag1—O72.684 (2)Cu3—O13vii1.936 (2)
Sr1—O18i2.449 (2)Cu3—O21.948 (2)
Sr1—O7i2.5484 (19)Cu3—O12vii1.9528 (18)
Sr1—O4ii2.580 (2)Cu3—O202.0551 (19)
Sr1—O8iii2.610 (2)Cu3—O8xi2.225 (2)
Sr1—O152.615 (2)Cu4—O23v1.914 (2)
Sr1—O132.6628 (19)Cu4—O191.922 (2)
Sr1—O20iv2.7325 (19)Cu4—O241.9553 (19)
Sr1—O18iv2.774 (2)Cu4—O11.9866 (19)
Sr2—O5iii2.480 (2)Cu5—O21v1.942 (2)
Sr2—O22iii2.502 (2)Cu5—O10v1.959 (2)
Sr2—O23v2.517 (2)Cu5—O16v1.9591 (19)
Sr2—O122.5813 (19)Cu5—O9vii1.988 (2)
Sr2—O32.622 (2)Cu5—O242.322 (2)
Sr2—O162.703 (2)P1—O31.516 (2)
Sr2—O12.8087 (19)P1—O21.535 (2)
Sr2—O102.819 (2)P1—O41.541 (2)
Sr2—O6iii2.890 (2)P1—O11.581 (2)
Sr3—O3vi2.498 (2)P2—O81.524 (2)
Sr3—O192.520 (2)P2—O61.535 (2)
Sr3—O14vii2.529 (2)P2—O51.540 (2)
Sr3—O10v2.5672 (19)P2—O71.548 (2)
Sr3—O242.630 (2)P3—O111.508 (2)
Sr3—O13vii2.766 (2)P3—O91.525 (2)
Sr3—O9vii2.816 (2)P3—O101.555 (2)
Sr3—O223.139 (3)P3—O121.5572 (19)
Sr3—O11v3.511 (2)P4—O141.523 (2)
Sr4—O11viii2.455 (2)P4—O151.530 (2)
Sr4—O212.470 (2)P4—O161.543 (2)
Sr4—O142.475 (2)P4—O131.560 (2)
Sr4—O2ix2.539 (2)P5—O181.509 (2)
Sr4—O12vi2.543 (2)P5—O171.533 (2)
Sr4—O62.688 (2)P5—O191.548 (2)
Sr4—O11vi2.707 (2)P5—O201.570 (2)
Sr4—O223.048 (2)P5—O12.988 (2)
Cu1—O4x1.9515 (19)P6—O221.512 (2)
Cu1—O41.9515 (19)P6—O211.529 (2)
Cu1—O20x2.0138 (19)P6—O231.544 (2)
Cu1—O202.0138 (19)P6—O241.553 (2)
Cu2—O5iii1.912 (2)
O15—Ag1—O6130.30 (7)O6—Sr4—O2265.95 (6)
O15—Ag1—O17i104.15 (7)O11vi—Sr4—O2280.99 (6)
O6—Ag1—O17i107.23 (7)O4x—Cu1—O4180.0
O15—Ag1—O1775.47 (7)O4x—Cu1—O20x90.19 (8)
O6—Ag1—O17127.71 (7)O4—Cu1—O20x89.82 (8)
O17i—Ag1—O17107.34 (5)O4x—Cu1—O2089.82 (8)
O15—Ag1—O7167.66 (7)O4—Cu1—O2090.18 (8)
O6—Ag1—O759.96 (6)O20x—Cu1—O20180.0
O17i—Ag1—O764.01 (6)O4x—Cu1—O8i104.34 (7)
O17—Ag1—O7103.95 (6)O4—Cu1—O8i75.66 (7)
O18i—Sr1—O7i94.81 (7)O20x—Cu1—O8i65.34 (7)
O18i—Sr1—O4ii108.26 (7)O20—Cu1—O8i114.66 (7)
O7i—Sr1—O4ii104.05 (6)O4x—Cu1—O8xi75.66 (7)
O18i—Sr1—O8iii174.83 (7)O4—Cu1—O8xi104.34 (7)
O7i—Sr1—O8iii82.72 (7)O20x—Cu1—O8xi114.66 (7)
O4ii—Sr1—O8iii68.14 (7)O20—Cu1—O8xi65.34 (7)
O18i—Sr1—O1586.11 (7)O8i—Cu1—O8xi180.00 (8)
O7i—Sr1—O1562.56 (6)O5iii—Cu2—O17174.10 (9)
O4ii—Sr1—O15161.76 (7)O5iii—Cu2—O7i95.24 (9)
O8iii—Sr1—O1596.71 (7)O17—Cu2—O7i90.39 (8)
O18i—Sr1—O13113.18 (7)O5iii—Cu2—O182.50 (8)
O7i—Sr1—O13107.77 (6)O17—Cu2—O191.63 (8)
O4ii—Sr1—O13124.26 (6)O7i—Cu2—O1168.00 (8)
O8iii—Sr1—O1371.95 (6)O5iii—Cu2—O1595.57 (9)
O15—Sr1—O1355.45 (6)O17—Cu2—O1587.46 (8)
O18i—Sr1—O20iv124.05 (6)O7i—Cu2—O1576.16 (7)
O7i—Sr1—O20iv141.00 (6)O1—Cu2—O15115.74 (7)
O4ii—Sr1—O20iv63.53 (6)O5iii—Cu2—O8i97.38 (8)
O8iii—Sr1—O20iv58.28 (6)O17—Cu2—O8i84.24 (8)
O15—Sr1—O20iv118.08 (6)O7i—Cu2—O8i56.67 (7)
O13—Sr1—O20iv62.82 (6)O1—Cu2—O8i111.79 (7)
O18i—Sr1—O18iv71.86 (7)O15—Cu2—O8i131.91 (6)
O7i—Sr1—O18iv163.91 (6)O5iii—Cu2—O483.95 (8)
O4ii—Sr1—O18iv89.03 (6)O17—Cu2—O492.22 (7)
O8iii—Sr1—O18iv111.27 (6)O7i—Cu2—O4113.28 (7)
O15—Sr1—O18iv106.49 (6)O1—Cu2—O454.83 (6)
O13—Sr1—O18iv70.98 (6)O15—Cu2—O4170.55 (6)
O20iv—Sr1—O18iv53.59 (6)O8i—Cu2—O457.36 (5)
O5iii—Sr2—O22iii121.69 (7)O13vii—Cu3—O2160.18 (9)
O5iii—Sr2—O23v116.94 (6)O13vii—Cu3—O12vii91.65 (8)
O22iii—Sr2—O23v115.45 (7)O2—Cu3—O12vii88.14 (8)
O5iii—Sr2—O1281.20 (7)O13vii—Cu3—O2089.56 (8)
O22iii—Sr2—O1289.49 (7)O2—Cu3—O2091.05 (8)
O23v—Sr2—O12124.57 (6)O12vii—Cu3—O20178.46 (8)
O5iii—Sr2—O377.65 (7)O13vii—Cu3—O8xi96.00 (8)
O22iii—Sr2—O383.32 (7)O2—Cu3—O8xi103.27 (9)
O23v—Sr2—O384.85 (7)O12vii—Cu3—O8xi104.10 (8)
O12—Sr2—O3149.55 (6)O20—Cu3—O8xi74.82 (7)
O5iii—Sr2—O1673.18 (7)O13vii—Cu3—O1971.97 (7)
O22iii—Sr2—O16152.12 (7)O2—Cu3—O1992.23 (7)
O23v—Sr2—O1668.53 (6)O12vii—Cu3—O19126.04 (7)
O12—Sr2—O1668.48 (6)O20—Cu3—O1955.29 (6)
O3—Sr2—O16124.31 (6)O8xi—Cu3—O19127.99 (6)
O5iii—Sr2—O158.77 (6)O13vii—Cu3—O9vii72.67 (7)
O22iii—Sr2—O1137.87 (7)O2—Cu3—O9vii91.22 (7)
O23v—Sr2—O161.68 (6)O12vii—Cu3—O9vii54.82 (7)
O12—Sr2—O1128.37 (6)O20—Cu3—O9vii126.52 (7)
O3—Sr2—O154.80 (6)O8xi—Cu3—O9vii154.46 (7)
O16—Sr2—O169.52 (6)O19—Cu3—O9vii71.23 (5)
O5iii—Sr2—O10122.96 (7)O23v—Cu4—O19175.03 (9)
O22iii—Sr2—O1094.73 (7)O23v—Cu4—O2494.12 (8)
O23v—Sr2—O1073.63 (6)O19—Cu4—O2486.62 (8)
O12—Sr2—O1054.70 (6)O23v—Cu4—O189.30 (8)
O3—Sr2—O10155.20 (6)O19—Cu4—O190.03 (8)
O16—Sr2—O1058.88 (6)O24—Cu4—O1176.54 (8)
O1—Sr2—O10120.87 (6)O23v—Cu4—O1670.33 (7)
O5iii—Sr2—O6iii54.03 (6)O19—Cu4—O16114.25 (7)
O22iii—Sr2—O6iii70.73 (6)O24—Cu4—O16104.78 (7)
O23v—Sr2—O6iii169.49 (6)O1—Cu4—O1675.83 (7)
O12—Sr2—O6iii62.19 (6)O23v—Cu4—O287.24 (7)
O3—Sr2—O6iii87.58 (6)O19—Cu4—O288.45 (7)
O16—Sr2—O6iii110.36 (6)O24—Cu4—O2128.42 (7)
O1—Sr2—O6iii107.91 (6)O1—Cu4—O252.25 (6)
O10—Sr2—O6iii115.23 (6)O16—Cu4—O2123.74 (5)
O3vi—Sr3—O19110.38 (7)O21v—Cu5—O10v169.90 (9)
O3vi—Sr3—O14vii82.58 (7)O21v—Cu5—O16v92.79 (9)
O19—Sr3—O14vii122.19 (6)O10v—Cu5—O16v87.76 (8)
O3vi—Sr3—O10v108.90 (7)O21v—Cu5—O9vii97.24 (9)
O19—Sr3—O10v127.01 (6)O10v—Cu5—O9vii86.98 (9)
O14vii—Sr3—O10v96.76 (6)O16v—Cu5—O9vii151.10 (9)
O3vi—Sr3—O24122.99 (6)O21v—Cu5—O2487.84 (8)
O19—Sr3—O2462.15 (6)O10v—Cu5—O2483.75 (8)
O14vii—Sr3—O24152.48 (7)O16v—Cu5—O24126.58 (8)
O10v—Sr3—O2467.04 (6)O9vii—Cu5—O2480.99 (8)
O3vi—Sr3—O13vii117.02 (6)O21v—Cu5—O2391.10 (7)
O19—Sr3—O13vii70.32 (6)O10v—Cu5—O2379.53 (7)
O14vii—Sr3—O13vii54.77 (6)O16v—Cu5—O2371.14 (7)
O10v—Sr3—O13vii119.03 (6)O9vii—Cu5—O23135.31 (7)
O24—Sr3—O13vii112.29 (6)O24—Cu5—O2355.44 (6)
O3vi—Sr3—O9vii166.81 (6)O21v—Cu5—O14v70.52 (7)
O19—Sr3—O9vii82.79 (6)O10v—Cu5—O14v117.73 (7)
O14vii—Sr3—O9vii90.80 (6)O16v—Cu5—O14v56.61 (7)
O10v—Sr3—O9vii60.41 (6)O9vii—Cu5—O14v101.64 (7)
O24—Sr3—O9vii62.03 (6)O24—Cu5—O14v158.36 (6)
O13vii—Sr3—O9vii66.93 (6)O23—Cu5—O14v122.40 (5)
O3vi—Sr3—O2273.38 (6)O3—P1—O2111.77 (11)
O19—Sr3—O2286.10 (6)O3—P1—O4110.53 (12)
O14vii—Sr3—O22148.30 (6)O2—P1—O4110.81 (11)
O10v—Sr3—O2272.66 (6)O3—P1—O1107.91 (11)
O24—Sr3—O2250.51 (6)O2—P1—O1107.36 (11)
O13vii—Sr3—O22156.23 (6)O4—P1—O1108.30 (11)
O9vii—Sr3—O22108.16 (6)O8—P2—O6112.23 (12)
O3vi—Sr3—O11v78.24 (6)O8—P2—O5110.05 (13)
O19—Sr3—O11v170.75 (6)O6—P2—O5106.61 (12)
O14vii—Sr3—O11v61.04 (6)O8—P2—O7109.64 (11)
O10v—Sr3—O11v44.55 (6)O6—P2—O7109.63 (12)
O24—Sr3—O11v110.69 (5)O5—P2—O7108.57 (12)
O13vii—Sr3—O11v109.31 (5)O11—P3—O9115.26 (12)
O9vii—Sr3—O11v88.58 (6)O11—P3—O10107.09 (12)
O22—Sr3—O11v93.45 (6)O9—P3—O10112.23 (12)
O11viii—Sr4—O2177.94 (7)O11—P3—O12107.68 (12)
O11viii—Sr4—O1480.40 (7)O9—P3—O12107.88 (11)
O21—Sr4—O1474.02 (7)O10—P3—O12106.25 (11)
O11viii—Sr4—O2ix98.52 (7)O14—P4—O15114.18 (12)
O21—Sr4—O2ix163.95 (7)O14—P4—O16110.49 (11)
O14—Sr4—O2ix89.98 (7)O15—P4—O16108.08 (12)
O11viii—Sr4—O12vi118.73 (7)O14—P4—O13104.92 (11)
O21—Sr4—O12vi130.97 (6)O15—P4—O13105.27 (11)
O14—Sr4—O12vi149.08 (7)O16—P4—O13113.93 (11)
O2ix—Sr4—O12vi64.54 (6)O18—P5—O17113.12 (11)
O11viii—Sr4—O6174.63 (7)O18—P5—O19109.40 (12)
O21—Sr4—O696.83 (7)O17—P5—O19110.47 (11)
O14—Sr4—O697.07 (7)O18—P5—O20107.49 (11)
O2ix—Sr4—O686.17 (6)O17—P5—O20108.67 (11)
O12vi—Sr4—O665.64 (6)O19—P5—O20107.49 (11)
O11viii—Sr4—O11vi65.85 (8)O18—P5—O1175.64 (9)
O21—Sr4—O11vi103.32 (7)O17—P5—O170.46 (8)
O14—Sr4—O11vi145.70 (7)O19—P5—O166.55 (8)
O2ix—Sr4—O11vi89.13 (7)O20—P5—O172.96 (8)
O12vi—Sr4—O11vi56.15 (6)O22—P6—O21110.56 (12)
O6—Sr4—O11vi117.07 (6)O22—P6—O23109.07 (12)
O11viii—Sr4—O22111.04 (7)O21—P6—O23111.36 (11)
O21—Sr4—O2252.59 (6)O22—P6—O24109.57 (13)
O14—Sr4—O22118.68 (6)O21—P6—O24108.90 (11)
O2ix—Sr4—O22141.14 (6)O23—P6—O24107.32 (11)
O12vi—Sr4—O2279.02 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+1, y+2, z+1; (ix) x+1, y+1, z; (x) x, y, z; (xi) x1, y1, z.
CHARDI and BVS analysis for the cations in the title compound top
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.
Cationq(i)·sof(i)CN(i)ECoN(i)V(i)Q(i)q(i)/Q(i)
Ag1153.930.9981.020.98
Sr1287.612.1252.030.98
Sr2286.962.3081.991.00
Sr3286.801.9621.981.01
Sr4298.072.2482.010.99
Cu1243.971.7651.921.04
Cu2243.972.0001.961.02
Cu3254.552.0501.941.03
Cu4254.372.0392.001.00
Cu5254.251.9571.941.03
P1543.974.8924.911.02
P2544.004.9625.200.96
P3543.974.9744.981.00
P4543.994.9445.040.99
P5543.974.9394.931.01
P6543.995.0165.100.98
CHARDI calculation for the oxygen anions in the title compound top
Atomsof(i)q(i)Q(i)q(i)/Q(i)
O11-2-2.020.99
O21-2-2.070.97
O31-2-1.981.01
O41-2-2.080.96
O51-2-2.120.94
O61-2-1.851.08
O71-2-2.050.97
O81-2-1.731.16
O91-2-1.901.05
O101-2-2.090.96
O111-2-1.921.04
O121-2-2.180.92
O131-2-2.060.97
O141-2-2.001.00
O151-2-1.981.01
O161-2-1.911.05
O171-2-2.050.98
O181-2-1.911.05
O191-2-2.090.96
O201-2-2.090.96
O211-2-2.120.94
O221-2-1.741.15
O231-2-2.050.97
O241-2-2.001.00
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationAdams, S., Moretzki, O. & Canadell, E. (2004). Solid State Ionics, 168, 281–290.  Web of Science CrossRef ICSD CAS Google Scholar
First citationAlhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013). Acta Cryst. E69, i56.  CrossRef ICSD IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBadrour, L., Oukerroum, J., Amenzou, H., Bensitel, M., Sadel, A. & Zahir, M. (2001). Ann. Chim. Sci. Mat. 26, 6, 131–138.  Google Scholar
First citationBelik, A. A., Azuma, M., Matsuo, A., Whangbo, M. H., Koo, H. J., Kikuchi, J., Kaji, T., Okubo, S., Ohta, H., Kindo, K. & Takano, M. (2005). Inorg. Chem. 44, 6632–6640.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationBelik, A. A., Malakho, A. P., Lazoryak, B. I. & Khasanov, S. S. (2002). J. Solid State Chem. 163, 121–131.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBelik, A. A., Malakho, A. P., Pokholok, K. V., Lazoryak, B. I. & Khasanov, S. S. (2000). J. Solid State Chem. 150, 159–166.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1977). Acta Cryst. B33, 1305–1310.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.  CrossRef CAS Web of Science Google Scholar
First citationBrown, I. D. (1992). Z. Kristallogr. 199, 255–272.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDroß, T. & Glaum, R. (2004). Acta Cryst. E60, i58–i60.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationEffenberger, H. (1999). J. Solid State Chem. 142, 6–13.  Web of Science CrossRef ICSD CAS Google Scholar
First citationEon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, J. (2014). Mater. Lett. 118, 84–87.  Web of Science CrossRef CAS Google Scholar
First citationHadrich, A., Lautié, A. & Mhiri, T. (2001). Spectrochim. Acta Part A, 57, 1673–1681.  Web of Science CrossRef CAS Google Scholar
First citationHidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2004). J. Solid State Chem. 177, 55–60.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHoppe, R. (1979). Z. Kristallogr. 150, 23–52.  CrossRef CAS Web of Science Google Scholar
First citationHoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.  CrossRef CAS Web of Science Google Scholar
First citationJerbi, H., Hidouri, M. & Ben Amara, M. (2010). J. Rare Earths, 28, 481–487.  Web of Science CrossRef ICSD CAS Google Scholar
First citationJeżowska-Trzebiatowska, B., Mazurak, Z. & Lis, T. (1980). Acta Cryst. B36, 1639–1641.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationKaranović, L., Šutović, S., Poleti, D., Đorđević, T. & Pačevski, A. (2010). Acta Cryst. C66, i42–i44.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKasuga, T., Yamamoto, K., Tsuzuki, T., Nogami, M. & Abe, Y. (1999). Mater. Res. Bull. 34, 10–11, 1595–1600.  Google Scholar
First citationKazin, P. E., Karpov, A. S., Jansen, M., Nuss, J. & Tretyakov, Y. D. (2003). Z. Anorg. Allg. Chem. 629, 344–352.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i50.  CrossRef ICSD IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLeGeros, R. Z. & Tung, M. S. (1983). Caries Res. 17, 419–429.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMentre, O., Abraham, F., Deffontaines, B. & Vast, P. (1994). Solid State Ionics, 72, 293–299.  CrossRef CAS Web of Science Google Scholar
First citationMoqine, A., Boukhari, A., Elammari, L. & Durand, J. (1993). J. Solid State Chem. 107, 368–372.  CrossRef ICSD CAS Web of Science Google Scholar
First citationNespolo, M. (2016). Acta Cryst. B72, 51–66.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652–664.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNespolo, M., Ferraris, G. & Ohashi, H. (1999). Acta Cryst. B55, 902–916.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationQuarton, M. & Oumba, M. T. (1983). Mater. Res. Bull. 18, 967–974.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSalinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, T., Toriyama, M., Hosono, H. & Abe, Y. (1991). J. Ferment. Bioeng. 72, 5, 384–391.  Google Scholar
First citationTernane, R., Ferid, M., Kbir-Ariguib, N. & Trabelsi-Ayedi, M. (2000). J. Alloys Compd. 308, 83–86.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds