research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and metabolic activity of 4-(thien-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­­oxy­lic acid eth­­oxy­carbonyl­phenyl­methyl­ester

CROSSMARK_Color_square_no_text.svg

aLatvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia, and bLatvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV-1067, Latvia
*Correspondence e-mail: mishnevs@osi.lv

Edited by J. T. Mague, Tulane University, USA (Received 30 August 2018; accepted 9 October 2018; online 12 October 2018)

In the title compound, C25H25NO5S, which exhibits metabolism-regulating activity, the 1,4-di­hydro­pyridine ring adopts a flattened boat conformation while the cyclo­hexenone ring is in an envelope conformation. Mol­ecules in the crystal are assembled into C(6) chains along the a-axis direction via N—H⋯O hydrogen bonds. The thienyl fragment is disordered over two sets of sites in a 0.7220 (19):0.2780 (19) ratio.

1. Chemical context

Up to now, the 2-methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quino­line-3-carb­oxy­lic esters in the class of condensed 1,4-di­hydro­pyridine (DHP) derivatives have been relatively poorly studied. Monocyclic DHPs are very commonly known as cardiovascular regulating and hypotensive compounds (Swarnalatha et al., 2011[Swarnalatha, G., Prasanthi, G. & Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75-89.]). The title compound is an original substance with a specific ligand effect on the metabolism-regulating free fatty acid receptor 3 (FFAR3 or GPR41). At the same time, it does not act on other metabolite-sensing receptors such as FFAR2 (GPR43) or the hy­droxy­carb­oxy­lic receptor 2 (HCA2) having similar pharmacological effects.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title compound. A two-component disorder is found for the thienyl fragment, which assumes two orientations differing by a 180° rotation around the C7—C16 bond. The major component has a refined occupancy of 0.7220 (19) and is that shown in Fig. 1[link]. The 1,4-di­hydro­pyridine ring adopts a flattened boat conformation while the cyclo­hexenone ring is in an envelope conformation. Atoms C7 and N1 deviate by 0.298 (3) and 0.135 (3) Å, respectively, in the same direction from the mean C6/C8/C9/C10 plane. The fused cyclo­hexene ring has an envelope conformation, with atom C13 out of the C8/C9/C12/C14/C15 plane by 0.628 (3) Å. The thienyl ring is almost perpendicular to the C6/C8/C9/C10 plane, subtending a dihedral angle of 82.50 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids. Only the major component of the disordered thienyl fragment is shown.

3. Supra­molecular features

In the crystal, inter­molecular N—H⋯O hydrogen bonds (Table 1[link]) assemble the mol­ecules into chains along the a-axis direction (Fig. 2[link]). The hydrogen-bonding pattern in the structure can be described by a C(6) graph-set motif. If one denotes the thienyl fragment as the `head' of the mol­ecule and an eth­oxy group as the `tail', then the crystal structure can be described as consisting of head-to-head and tail-to-tail mol­ecular assemblies, or layers, parallel to the ac plane and stabilized by van der Waals inter­actions (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.89 (3) 1.91 (3) 2.794 (3) 171 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the b-axis direction. N—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxy­lic acid fragment gave nine hits: BEZWEK (Kidwai et al., 2012[Kidwai, M., Chauhan, R., Bhatnagar, D., Singh, A. K., Mishra, B. & Dey, S. (2012). Monatsh. Chem. 143, 1675-1680.]), FERHEQ (Carroll et al., 2004[Carroll, W. A., Agrios, K. A., Altenbach, R. J., Buckner, S. A., Chen, Y., Coghlan, M. J., Daza, A. V., Drizin, I., Gopalakrishnan, M., Henry, R. F., Kort, M. E., Kym, P. R., Milicic, I., Smith, J. C., Tang, R., Turner, S. C., Whiteaker, K. L., Zhang, H. & Sullivan, J. P. (2004). J. Med. Chem. 47, 3180-3192.]), HALLUE (Huang et al., 2016[Huang, H., Zhao, Y.-L., Wei, H., Wei, P.-F. & Liu, J.-P. (2016). Jiegou Huaxue, 35, 1553-.]), JOXTOF (Rose & Dräger, 1992[Rose, U. & Dräger, M. (1992). J. Med. Chem. 35, 2238-2243.]), LAVWIP (Yu et al., 2005[Yu, C.-X., Shi, D.-Q., Yao, C.-S., Wang, X.-S. & Zhuang, Q.-Y. (2005). Acta Cryst. E61, o3224-o3225.]), RAQROT (Meng et al., 2017[Meng, J., Dai, Y. & Sui, F. (2017). Z. Krist. New Cryst. Struct. 232, 111-112.]), SUYWIT (Natarajan et al., 2010[Natarajan, S., Indumathi, P., Reddy, B. P., Vijayakumar, V. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o2240.]), VUZRIS (Yang et al., 2010[Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.]) and YIYDUH (Gein et al., 2014[Gein, V. L., Kazantseva, M. I., Gein, L. F. & Slepukhin, P. A. (2014). Russ. J. Org. Chem. 50, 240-243.]). Unlike the title compound, which has a thienyl group at position 4 of the 1,4-di­hydro­pyridine ring, the most closely related structures found in the CSD have phenyl derivatives exclusively at this position. In all of the selected structures, the 1,4-di­hydro­pyridine ring also assumes a boat conformation of different depths. Deviations from the mean plane of the four basal atoms range from 0.067 (3) to 0.168 (2) Å for the N atom and 0.177 (4) to 0.399 (2) Å for C atoms. The dihedral angles between the planar substituents on the 1,4-di­hydro­pyridine ring and its mean plane are close to 90°. The only exception is LAVWIP with an angle of 83.62 (8)°. Seven of the nine listed crystal structures analogous to the title compound have inter­molecular N—H⋯O-type hydrogen-bonding motifs.

5. Metabolic activity

The title compound possesses considerable and specific activity as a ligand of FFAR3. At 50 µM concentration, the compound inhibits forskolin-stimulated level of cAMP by 60% in recombinant cells expressing FFAR3. The compound through FFAR3 inhibits the cAMP-dependent pathway by inhibiting adenylate cyclase activity and decreasing the production of cAMP, which results in decreased activity of cAMP-dependent protein kinase. The activation of FFAR3 could be involved in the production of leptin by adipose tissue, regulation of intestinal immunity and secretion of the PYY peptide and GLP-1 hormone by enteroendocrine cells (Ichimura et al., 2014[Ichimura, A., Hasegawa, S., Kasubuchi, Ma. & Kimura, I. (2014). Front. Pharmacol. 5, 236. https://www.frontiersin.org/article/10.3389/fphar.2014.00236.]).

6. Synthesis and crystallization

4-(Thien-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quino­line-3-carb­oxy­lic acid eth­oxy­carbonyl­phenyl­methyl­ester 1 was synthesized according to the scheme in Fig. 3[link] as follows. A solution of 1.12 g (10 mmol) of thio­phene-2-carbaldehyde 3, 2.64 g (10 mmol) of 3-oxobutyric acid 4 and 2.3 g (30 mmol) of ammonium acetate in 15 mL of ethanol was stirred at room temperature. After 10 min, 1.12 g (10 mmol) of cyclo­hexane-1,3-dione 2 and 10 drops of acetic acid were added. The reaction mixture was stirred overnight and the resulting precipitate was filtered off and washed with 50% ethanol. After crystallization from ethanol, 2.5 g (55.4%) of compound 1 was obtained. m.p. 494–496 K. 1H NMR (400 MHz, CDCl3) δ, ppm: 1.13 (3H, t, J = 7.0 Hz, CH3), 1.88–2.00 (2H, m, CH2), 2.24–2.36 (2H, m, CH2), 2.37 (3H, s, CH3), 2.38–2.48 (2H, m, CH2), 3.95–4.23 (2H, m, CH2), 5.47 (1H, s, CH), 5.88 (1H, s, CH), 6.39 (1H, s, NH), 6.86 (1H, dd, J = 5.1, 3.5 Hz, HTh), 6.96 (1H, dt, J = 3.6, 1.0 Hz, HTh), 7.04 (1H, dd, J = 5.1, 1.3 Hz, HTh), 7.30–7.35 (3H, m, 3 HAr), 7.36–7.42 (2H, m, 2 HAr). LC–MS (ESI), m/z: 450 ([M − H], 100%). Analysis calculated for C25H25NO5S: C, 66.50; H, 5.58; N, 3.10. Found C, 66.23; H, 5.70; N, 3.00.

[Figure 3]
Figure 3
Reaction scheme for the title compound 1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and included as riding contributions in the final stages of refinement [Csp3—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methine and methyl­ene groups, and Uiso(H) = 1.5Ueq(C) for methyl groups]. The hydrogen atom bonded to the nitro­gen atom was identified as the strongest peak in the electron-density difference map and was refined isotropically. There is a two-component disorder in the thienyl group with the ring assuming two positions with opposite orientations. The two orientations were refined as rigid groups using an accurate determination of the geometry of the thienyl group taken from CSD structure UWIYUW (Anil et al., 2016[Anil, B., Ozokan, K. G., Kaban, S., Sahin, E. & Kazaz, C. (2016). Magn. Reson. Chem. 54, 184-189.]) as the model. Refinement of the group occupation factor (the second free variable in the FVAR instruction of SHELXL) gave the value of 0.7220 (19).

Table 2
Experimental details

Crystal data
Chemical formula C25H25NO5S
Mr 451.52
Crystal system, space group Monoclinic, P21/a
Temperature (K) 190
a, b, c (Å) 13.9560 (4), 8.2829 (2), 19.9532 (6)
β (°) 95.475 (1)
V3) 2295.99 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.3 × 0.2 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 16429, 5205, 2784
Rint 0.083
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.166, 1.03
No. of reflections 5205
No. of parameters 290
No. of restraints 27
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.64
Computer programs: COLLECT (Bruker, 2001[Bruker (2001). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2001); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

4-(Thien-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylic acid ethoxycarbonylphenylmethylester top
Crystal data top
C25H25NO5SF(000) = 952
Mr = 451.52Dx = 1.306 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 13.9560 (4) ÅCell parameters from 25734 reflections
b = 8.2829 (2) Åθ = 1.0–27.5°
c = 19.9532 (6) ŵ = 0.18 mm1
β = 95.475 (1)°T = 190 K
V = 2295.99 (11) Å3Plate, colourless
Z = 40.3 × 0.2 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.083
CCD scansθmax = 27.5°, θmin = 2.1°
16429 measured reflectionsh = 1817
5205 independent reflectionsk = 109
2784 reflections with I > 2σ(I)l = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.4915P]
where P = (Fo2 + 2Fc2)/3
5205 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.70 e Å3
27 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.75161 (15)0.4350 (2)0.57527 (10)0.0476 (5)
O20.85597 (15)0.2267 (2)0.58740 (10)0.0491 (6)
O30.90570 (12)0.3165 (2)0.71788 (9)0.0325 (4)
O40.75961 (13)0.2072 (2)0.72353 (9)0.0381 (5)
O50.71302 (13)0.3042 (2)0.83280 (10)0.0406 (5)
N11.02122 (16)0.0942 (3)0.82113 (12)0.0339 (6)
H11.084 (2)0.117 (3)0.8230 (14)0.042 (8)*
C10.6277 (3)0.2471 (5)0.53168 (18)0.0680 (10)
H1A0.5795240.3041820.5535060.102*
H1B0.6565220.1659930.5615060.102*
H1C0.5985420.1967720.4914550.102*
C20.7039 (3)0.3638 (4)0.51375 (15)0.0554 (9)
H2A0.7508550.3077880.4894030.067*
H2B0.6747820.4482370.4849260.067*
C30.8232 (2)0.3498 (3)0.60713 (14)0.0374 (7)
C40.8592 (2)0.4337 (3)0.67260 (13)0.0359 (7)
H40.8047060.4816250.6929520.043*
C50.84575 (19)0.2011 (3)0.73912 (13)0.0285 (6)
C60.89291 (17)0.0766 (3)0.78203 (12)0.0256 (6)
C70.8235 (2)0.0249 (3)0.81920 (18)0.0248 (6)0.7220 (19)
H70.7640370.0382270.7894190.030*0.7220 (19)
C7A0.8263 (4)0.0218 (4)0.8227 (3)0.0248 (6)0.2780 (19)
H7A0.7627520.0285730.7972420.030*0.2780 (19)
C80.86523 (17)0.1902 (3)0.83423 (12)0.0251 (6)
C90.96138 (18)0.2152 (3)0.83726 (13)0.0295 (6)
C100.98829 (17)0.0443 (3)0.78774 (13)0.0287 (6)
C111.06707 (18)0.1369 (3)0.75901 (16)0.0390 (7)
H11A1.0627700.2487350.7709430.059*
H11B1.0605410.1263730.7108740.059*
H11C1.1283780.0947860.7768030.059*
C121.00698 (19)0.3764 (3)0.85434 (15)0.0379 (7)
H12A1.0701330.3603020.8781930.046*
H12B1.0150470.4351590.8132110.046*
C130.9449 (2)0.4740 (3)0.89777 (16)0.0414 (7)
H13A0.9710460.5821580.9035500.050*
H13B0.9461040.4244420.9418870.050*
C140.84209 (19)0.4835 (3)0.86628 (15)0.0372 (7)
H14A0.8394550.5555130.8278140.045*
H14B0.8023650.5296810.8987070.045*
C150.80077 (18)0.3218 (3)0.84359 (13)0.0286 (6)
C160.79862 (18)0.0618 (6)0.88204 (13)0.0268 (8)0.7220 (19)
C170.71371 (14)0.1323 (5)0.89469 (16)0.0504 (3)0.7220 (19)
H170.6595590.1357930.8637100.060*0.7220 (19)
C180.71712 (14)0.1995 (4)0.96007 (17)0.0507 (11)0.7220 (19)
H180.6648220.2509350.9763350.061*0.7220 (19)
C190.80236 (17)0.1825 (5)0.99655 (12)0.0566 (14)0.7220 (19)
H190.8162900.2194991.0404090.068*0.7220 (19)
S10.88191 (9)0.0831 (2)0.95088 (8)0.0504 (3)0.7220 (19)
C16A0.8149 (5)0.051 (2)0.8910 (5)0.0268 (8)0.2780 (19)
C17A0.8822 (4)0.0718 (18)0.9447 (6)0.0504 (3)0.2780 (19)
H17A0.9445870.0313980.9464200.060*0.2780 (19)
C18A0.8467 (5)0.1615 (13)0.9974 (4)0.0507 (11)0.2780 (19)
H18A0.8840480.1864141.0371720.061*0.2780 (19)
C19A0.7546 (5)0.2074 (13)0.9850 (3)0.0566 (14)0.2780 (19)
H19A0.7206890.2672131.0143430.068*0.2780 (19)
S1A0.7081 (2)0.1401 (5)0.90743 (15)0.0504 (3)0.2780 (19)
C200.9317 (2)0.5633 (3)0.66095 (14)0.0394 (7)
C210.9020 (2)0.7238 (3)0.65493 (14)0.0431 (8)
H210.8387040.7511270.6606390.052*
C220.9669 (3)0.8425 (4)0.64045 (16)0.0545 (9)
H220.9465450.9491290.6356710.065*
C231.0606 (3)0.8041 (4)0.63313 (18)0.0646 (10)
H231.1036240.8844740.6232740.077*
C241.0917 (3)0.6457 (4)0.6404 (2)0.0700 (11)
H241.1557060.6197030.6363990.084*
C251.0266 (2)0.5263 (4)0.65351 (18)0.0563 (9)
H251.0470880.4195970.6573950.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0618 (14)0.0392 (11)0.0398 (12)0.0095 (10)0.0058 (10)0.0052 (9)
O20.0655 (15)0.0385 (12)0.0443 (13)0.0115 (10)0.0104 (11)0.0041 (10)
O30.0325 (10)0.0299 (10)0.0360 (11)0.0012 (8)0.0080 (8)0.0095 (8)
O40.0284 (11)0.0410 (11)0.0451 (12)0.0073 (8)0.0045 (9)0.0111 (9)
O50.0237 (11)0.0410 (11)0.0574 (13)0.0076 (9)0.0057 (9)0.0006 (10)
N10.0174 (12)0.0310 (12)0.0530 (15)0.0010 (10)0.0018 (10)0.0108 (11)
C10.083 (3)0.074 (2)0.046 (2)0.014 (2)0.0019 (19)0.0048 (18)
C20.075 (2)0.0536 (19)0.0348 (18)0.0023 (18)0.0074 (16)0.0111 (15)
C30.0494 (18)0.0321 (15)0.0321 (15)0.0035 (14)0.0107 (14)0.0079 (13)
C40.0452 (17)0.0298 (14)0.0335 (15)0.0095 (13)0.0078 (13)0.0084 (12)
C50.0294 (15)0.0269 (13)0.0305 (14)0.0040 (12)0.0096 (12)0.0022 (11)
C60.0241 (13)0.0256 (13)0.0273 (13)0.0008 (11)0.0031 (11)0.0006 (11)
C70.0174 (13)0.0259 (13)0.0305 (14)0.0003 (10)0.0001 (11)0.0013 (11)
C7A0.0174 (13)0.0259 (13)0.0305 (14)0.0003 (10)0.0001 (11)0.0013 (11)
C80.0220 (13)0.0260 (13)0.0278 (14)0.0026 (11)0.0047 (10)0.0002 (11)
C90.0245 (14)0.0250 (13)0.0392 (16)0.0018 (11)0.0033 (12)0.0018 (11)
C100.0255 (14)0.0251 (13)0.0357 (15)0.0024 (11)0.0038 (11)0.0030 (11)
C110.0255 (15)0.0347 (15)0.0577 (19)0.0005 (12)0.0083 (13)0.0102 (14)
C120.0301 (15)0.0279 (14)0.0555 (19)0.0046 (12)0.0026 (13)0.0071 (13)
C130.0425 (17)0.0264 (14)0.0556 (19)0.0040 (13)0.0064 (14)0.0101 (13)
C140.0397 (16)0.0267 (14)0.0468 (17)0.0050 (12)0.0119 (13)0.0012 (12)
C150.0283 (15)0.0301 (14)0.0276 (14)0.0037 (12)0.0048 (11)0.0031 (11)
C160.0268 (18)0.0221 (15)0.0319 (18)0.0046 (15)0.0052 (14)0.0060 (15)
C170.0604 (6)0.0523 (6)0.0378 (6)0.0114 (4)0.0017 (4)0.0017 (4)
C180.069 (3)0.036 (2)0.053 (3)0.008 (2)0.033 (2)0.008 (2)
C190.085 (4)0.050 (2)0.038 (2)0.016 (3)0.020 (2)0.0116 (18)
S10.0604 (6)0.0523 (6)0.0378 (6)0.0114 (4)0.0017 (4)0.0017 (4)
C16A0.0268 (18)0.0221 (15)0.0319 (18)0.0046 (15)0.0052 (14)0.0060 (15)
C17A0.0604 (6)0.0523 (6)0.0378 (6)0.0114 (4)0.0017 (4)0.0017 (4)
C18A0.069 (3)0.036 (2)0.053 (3)0.008 (2)0.033 (2)0.008 (2)
C19A0.085 (4)0.050 (2)0.038 (2)0.016 (3)0.020 (2)0.0116 (18)
S1A0.0604 (6)0.0523 (6)0.0378 (6)0.0114 (4)0.0017 (4)0.0017 (4)
C200.058 (2)0.0305 (15)0.0318 (15)0.0001 (14)0.0137 (14)0.0037 (12)
C210.066 (2)0.0301 (15)0.0326 (16)0.0020 (15)0.0012 (14)0.0039 (12)
C220.087 (3)0.0302 (16)0.0449 (19)0.0051 (18)0.0009 (18)0.0012 (14)
C230.092 (3)0.0387 (19)0.067 (2)0.0210 (19)0.026 (2)0.0016 (17)
C240.070 (3)0.047 (2)0.099 (3)0.0094 (18)0.041 (2)0.002 (2)
C250.064 (2)0.0356 (17)0.075 (2)0.0012 (16)0.0362 (19)0.0043 (16)
Geometric parameters (Å, º) top
C1—C21.505 (5)C14—C131.513 (4)
C1—H1A0.9600C14—H14A0.9700
C1—H1B0.9600C14—H14B0.9700
C1—H1C0.9600C13—H13A0.9700
O1—C31.334 (3)C13—H13B0.9700
O1—C21.463 (4)C7—C161.514 (3)
C5—O41.214 (3)C7—H70.9800
C5—O31.364 (3)C16—C171.3662
C5—C61.456 (3)C16—S11.7216
O5—C151.232 (3)C17—C181.4147
C4—O31.438 (3)C17—H170.9300
C4—C201.508 (4)C18—C191.3415
C4—C31.522 (4)C18—H180.9300
C4—H40.9800C19—S11.7128
C3—O21.200 (3)C19—H190.9300
N1—C91.363 (3)C7A—C16A1.514 (4)
N1—C101.383 (3)C7A—H7A0.9800
N1—H10.89 (3)C16A—C17A1.3662
C2—H2A0.9700C16A—S1A1.7217
C2—H2B0.9700C17A—C18A1.4147
C6—C101.352 (3)C17A—H17A0.9300
C6—C7A1.527 (4)C18A—C19A1.3415
C6—C71.527 (3)C18A—H18A0.9300
C9—C81.353 (3)C19A—S1A1.7129
C9—C121.504 (3)C19A—H19A0.9300
C8—C151.437 (3)C20—C251.380 (4)
C8—C7A1.507 (4)C20—C211.394 (4)
C8—C71.507 (3)C21—C221.386 (4)
C11—C101.498 (4)C21—H210.9300
C11—H11A0.9600C22—C231.367 (5)
C11—H11B0.9600C22—H220.9300
C11—H11C0.9600C23—C241.385 (5)
C12—C131.516 (4)C23—H230.9300
C12—H12A0.9700C24—C251.384 (4)
C12—H12B0.9700C24—H240.9300
C14—C151.510 (4)C25—H250.9300
C2—C1—H1A109.5C14—C13—H13A109.4
C2—C1—H1B109.5C12—C13—H13A109.4
H1A—C1—H1B109.5C14—C13—H13B109.4
C2—C1—H1C109.5C12—C13—H13B109.4
H1A—C1—H1C109.5H13A—C13—H13B108.0
H1B—C1—H1C109.5O5—C15—C8120.8 (2)
C3—O1—C2116.5 (2)O5—C15—C14120.2 (2)
O4—C5—O3120.9 (2)C8—C15—C14119.1 (2)
O4—C5—C6124.1 (2)C8—C7—C16112.4 (3)
O3—C5—C6115.0 (2)C8—C7—C6110.3 (2)
O3—C4—C20108.0 (2)C16—C7—C6110.3 (3)
O3—C4—C3108.8 (2)C8—C7—H7107.9
C20—C4—C3111.4 (2)C16—C7—H7107.9
O3—C4—H4109.5C6—C7—H7107.9
C20—C4—H4109.5C17—C16—C7128.87 (18)
C3—C4—H4109.5C17—C16—S1109.9
C5—O3—C4114.5 (2)C7—C16—S1121.23 (18)
O2—C3—O1125.8 (3)C16—C17—C18112.6
O2—C3—C4124.4 (3)C16—C17—H17123.7
O1—C3—C4109.8 (2)C18—C17—H17123.7
C9—N1—C10122.8 (2)C19—C18—C17114.2
C9—N1—H1117.0 (18)C19—C18—H18122.9
C10—N1—H1118.4 (19)C17—C18—H18122.9
O1—C2—C1109.5 (3)C18—C19—S1110.4
O1—C2—H2A109.8C18—C19—H19124.8
C1—C2—H2A109.8S1—C19—H19124.8
O1—C2—H2B109.8C19—S1—C1692.9
C1—C2—H2B109.8C8—C7A—C16A107.4 (6)
H2A—C2—H2B108.2C8—C7A—C6110.3 (3)
C10—C6—C5125.1 (2)C16A—C7A—C6112.7 (8)
C10—C6—C7A119.6 (3)C8—C7A—H7A108.8
C5—C6—C7A115.2 (3)C16A—C7A—H7A108.8
C10—C6—C7121.0 (2)C6—C7A—H7A108.8
C5—C6—C7113.8 (2)C17A—C16A—C7A129.3 (4)
C8—C9—N1120.3 (2)C17A—C16A—S1A109.9
C8—C9—C12122.9 (2)C7A—C16A—S1A120.6 (4)
N1—C9—C12116.8 (2)C16A—C17A—C18A112.6
C9—C8—C15120.6 (2)C16A—C17A—H17A123.7
C9—C8—C7A119.4 (3)C18A—C17A—H17A123.7
C15—C8—C7A120.1 (3)C19A—C18A—C17A114.2
C9—C8—C7120.7 (2)C19A—C18A—H18A122.9
C15—C8—C7118.7 (2)C17A—C18A—H18A122.9
C10—C11—H11A109.5C18A—C19A—S1A110.4
C10—C11—H11B109.5C18A—C19A—H19A124.8
H11A—C11—H11B109.5S1A—C19A—H19A124.8
C10—C11—H11C109.5C19A—S1A—C16A92.9
H11A—C11—H11C109.5C25—C20—C21118.9 (3)
H11B—C11—H11C109.5C25—C20—C4121.5 (2)
C6—C10—N1118.9 (2)C21—C20—C4119.6 (3)
C6—C10—C11128.2 (2)C22—C21—C20120.0 (3)
N1—C10—C11112.7 (2)C22—C21—H21120.0
C9—C12—C13110.5 (2)C20—C21—H21120.0
C9—C12—H12A109.5C23—C22—C21120.5 (3)
C13—C12—H12A109.5C23—C22—H22119.7
C9—C12—H12B109.5C21—C22—H22119.7
C13—C12—H12B109.5C22—C23—C24120.1 (3)
H12A—C12—H12B108.1C22—C23—H23119.9
C15—C14—C13113.5 (2)C24—C23—H23119.9
C15—C14—H14A108.9C25—C24—C23119.5 (4)
C13—C14—H14A108.9C25—C24—H24120.3
C15—C14—H14B108.9C23—C24—H24120.3
C13—C14—H14B108.9C20—C25—C24121.0 (3)
H14A—C14—H14B107.7C20—C25—H25119.5
C14—C13—C12111.2 (2)C24—C25—H25119.5
O4—C5—O3—C44.6 (3)C15—C8—C7—C6155.5 (2)
C6—C5—O3—C4176.8 (2)C10—C6—C7—C824.2 (4)
C20—C4—O3—C5172.9 (2)C5—C6—C7—C8153.0 (2)
C3—C4—O3—C566.1 (3)C10—C6—C7—C16100.6 (3)
C2—O1—C3—O25.5 (4)C5—C6—C7—C1682.3 (3)
C2—O1—C3—C4175.4 (2)C8—C7—C16—C17127.5 (3)
O3—C4—C3—O223.9 (4)C6—C7—C16—C17109.0 (4)
C20—C4—C3—O295.0 (3)C8—C7—C16—S152.4 (5)
O3—C4—C3—O1157.0 (2)C6—C7—C16—S171.1 (4)
C20—C4—C3—O184.1 (3)C7—C16—C17—C18178.9 (6)
C3—O1—C2—C184.0 (3)S1—C16—C17—C181.1
O4—C5—C6—C10163.8 (3)C16—C17—C18—C190.5
O3—C5—C6—C1017.6 (4)C17—C18—C19—S10.3
O4—C5—C6—C7A16.1 (5)C18—C19—S1—C160.7
O3—C5—C6—C7A162.5 (3)C17—C16—S1—C191.0
O4—C5—C6—C713.2 (4)C7—C16—S1—C19178.9 (5)
O3—C5—C6—C7165.4 (2)C9—C8—C7A—C16A94.3 (6)
C10—N1—C9—C814.3 (4)C15—C8—C7A—C16A84.1 (7)
C10—N1—C9—C12162.4 (3)C9—C8—C7A—C628.9 (6)
N1—C9—C8—C15172.8 (2)C15—C8—C7A—C6152.7 (3)
C12—C9—C8—C153.7 (4)C10—C6—C7A—C830.1 (6)
N1—C9—C8—C7A8.7 (5)C5—C6—C7A—C8149.8 (4)
C12—C9—C8—C7A174.7 (4)C10—C6—C7A—C16A89.9 (5)
N1—C9—C8—C75.6 (4)C5—C6—C7A—C16A90.2 (5)
C12—C9—C8—C7177.9 (3)C8—C7A—C16A—C17A56.8 (10)
C5—C6—C10—N1169.0 (2)C6—C7A—C16A—C17A64.8 (9)
C7A—C6—C10—N110.9 (5)C8—C7A—C16A—S1A129.4 (9)
C7—C6—C10—N17.8 (4)C6—C7A—C16A—S1A108.9 (11)
C5—C6—C10—C117.7 (4)C7A—C16A—C17A—C18A173.3 (17)
C7A—C6—C10—C11172.4 (4)S1A—C16A—C17A—C18A1.1
C7—C6—C10—C11175.5 (3)C16A—C17A—C18A—C19A0.5
C9—N1—C10—C613.0 (4)C17A—C18A—C19A—S1A0.3
C9—N1—C10—C11164.1 (3)C18A—C19A—S1A—C16A0.7
C8—C9—C12—C1327.0 (4)C17A—C16A—S1A—C19A1.0
N1—C9—C12—C13156.3 (2)C7A—C16A—S1A—C19A173.9 (15)
C15—C14—C13—C1248.6 (3)O3—C4—C20—C2539.8 (4)
C9—C12—C13—C1451.9 (3)C3—C4—C20—C2579.7 (3)
C9—C8—C15—O5171.0 (2)O3—C4—C20—C21142.7 (2)
C7A—C8—C15—O510.5 (5)C3—C4—C20—C2197.8 (3)
C7—C8—C15—O57.4 (4)C25—C20—C21—C221.2 (4)
C9—C8—C15—C148.4 (4)C4—C20—C21—C22176.4 (3)
C7A—C8—C15—C14170.1 (4)C20—C21—C22—C231.2 (5)
C7—C8—C15—C14173.2 (3)C21—C22—C23—C240.2 (5)
C13—C14—C15—O5162.0 (3)C22—C23—C24—C251.5 (6)
C13—C14—C15—C818.6 (4)C21—C20—C25—C240.1 (5)
C9—C8—C7—C16100.6 (3)C4—C20—C25—C24177.6 (3)
C15—C8—C7—C1681.0 (4)C23—C24—C25—C201.4 (6)
C9—C8—C7—C622.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.89 (3)1.91 (3)2.794 (3)171 (3)
Symmetry code: (i) x+1/2, y1/2, z.
 

Funding information

Funding for this research was provided by: Latvian State Research Program Biomedicine .

References

First citationAnil, B., Ozokan, K. G., Kaban, S., Sahin, E. & Kazaz, C. (2016). Magn. Reson. Chem. 54, 184–189.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2001). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCarroll, W. A., Agrios, K. A., Altenbach, R. J., Buckner, S. A., Chen, Y., Coghlan, M. J., Daza, A. V., Drizin, I., Gopalakrishnan, M., Henry, R. F., Kort, M. E., Kym, P. R., Milicic, I., Smith, J. C., Tang, R., Turner, S. C., Whiteaker, K. L., Zhang, H. & Sullivan, J. P. (2004). J. Med. Chem. 47, 3180–3192.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGein, V. L., Kazantseva, M. I., Gein, L. F. & Slepukhin, P. A. (2014). Russ. J. Org. Chem. 50, 240–243.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H., Zhao, Y.-L., Wei, H., Wei, P.-F. & Liu, J.-P. (2016). Jiegou Huaxue, 35, 1553–.  Google Scholar
First citationIchimura, A., Hasegawa, S., Kasubuchi, Ma. & Kimura, I. (2014). Front. Pharmacol. 5, 236. https://www.frontiersin.org/article/10.3389/fphar.2014.00236.  Google Scholar
First citationKidwai, M., Chauhan, R., Bhatnagar, D., Singh, A. K., Mishra, B. & Dey, S. (2012). Monatsh. Chem. 143, 1675–1680.  Web of Science CrossRef Google Scholar
First citationMeng, J., Dai, Y. & Sui, F. (2017). Z. Krist. New Cryst. Struct. 232, 111–112.  Google Scholar
First citationNatarajan, S., Indumathi, P., Reddy, B. P., Vijayakumar, V. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o2240.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRose, U. & Dräger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwarnalatha, G., Prasanthi, G. & Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75–89.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, C.-X., Shi, D.-Q., Yao, C.-S., Wang, X.-S. & Zhuang, Q.-Y. (2005). Acta Cryst. E61, o3224–o3225.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds