Download citation
Download citation
link to html
A series of diaminium thio­sulfates, derivatives of di­amines: NH2CH2CH(CH3)NH2 (1) and NH2(CH2)nNH2, n = 3–6 [(2)–(5)] and thio­sulfuric acid were prepared and their structures determined by single-crystal X-ray diffraction analysis. Compounds (1), (2) and (4) turned out to be hydrates. The crystal structure of 1,2-propyl­enediaminium thio­sulfate is chiral and exhibits spontaneous resolution. Crystals for both enantiomers [(1a) and (1b)] were obtained with high enantiometric excess and examined. An extended network of strong, charge-assisted hydrogen bonding of the +N—H...O type (also O—H...O and O—H...S for hydrates) is most likely the main factor defining crystal packing and the variable conformation of the cations. The formation of chiral hydrogen-bond motifs – distorted cubans – seems to induce the formation of chiral solid-state structure from achiral components in the case of (4). Diaminium thio­sulfates with an odd number of C atoms in the alkyl chain [compounds (1), (2) and (4)] form three-dimensional supramolecular networks, while in the case of diaminium salts with an even number of C atoms [(3) and (5)], two-dimensional layers of hydrogen-bond domains are observed. The aminium thio­sulfates were also characterized by elemental analysis, NMR and Fourier transform (FT)–IR spectroscopy. The conformations of α,ω-alkyl­diaminium cations in the solid state are discussed and rationalized by DFT calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617004802/eb5057sup1.cif
Contains datablocks global, Comp_1a, Comp_1b, Comp_2, Comp_3, Comp_4, Comp_5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617004802/eb5057Comp_1asup2.hkl
Contains datablock Comp_1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617004802/eb5057Comp_1bsup3.hkl
Contains datablock Comp_1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617004802/eb5057Comp_2sup4.hkl
Contains datablock Comp_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617004802/eb5057Comp_3sup5.hkl
Contains datablock Comp_3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617004802/eb5057Comp_4sup6.hkl
Contains datablock Comp_4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617004802/eb5057Comp_5sup7.hkl
Contains datablock Comp_5

CCDC references: 1484873; 1484874; 1484875; 1484876; 1484877; 1484878

Computing details top

Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) for Comp_1a; CrysAlis PRO (Agilent Technologies, 2011), Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) for Comp_1b; CrysAlis PRO (Agilent Technologies, 2011) for Comp_3; STOE X-AREA for Comp_4, Comp_5. Cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) for Comp_1a; CrysAlis PRO (Agilent Technologies, 2011), Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) for Comp_1b; CrysAlis PRO (Agilent Technologies, 2011) for Comp_3; STOE X-AREA for Comp_4, Comp_5. Data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) for Comp_1a; CrysAlis PRO (Agilent Technologies, 2011), Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) for Comp_1b; CrysAlis PRO (Agilent Technologies, 2011) for Comp_3; STOE X-RED for Comp_4, Comp_5. Program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013) for Comp_1a, Comp_3; SHELXS2014 (Sheldrick, 2014) for Comp_1b. For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(Comp_1a) top
Crystal data top
O3S22·C3H12N22+·H2OF(000) = 440
Mr = 206.28Dx = 1.507 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2143 reflections
a = 8.4086 (5) Åθ = 2.8–28.6°
b = 9.7870 (5) ŵ = 0.56 mm1
c = 11.0477 (6) ÅT = 293 K
V = 909.17 (9) Å3Fragment, colourless
Z = 40.52 × 0.34 × 0.12 mm
Data collection top
KUMA KM4CCD, Sapphire2, large Be window
diffractometer
1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 107
Tmin = 0.890, Tmax = 1k = 1110
3135 measured reflectionsl = 813
1620 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1620 reflectionsΔρmax = 0.40 e Å3
108 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack x determined using 577 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4586 (4)0.8918 (4)0.4035 (3)0.0272 (9)
H1A0.36560.93380.41350.041*
H1B0.44750.80320.41970.041*
H1C0.4910.90220.32740.041*
N20.6737 (4)1.1714 (3)0.5697 (3)0.0299 (9)
H2A0.61081.15460.63270.045*
H2B0.67951.26110.55750.045*
H2C0.77051.13860.58440.045*
C10.5793 (6)0.9527 (5)0.4878 (4)0.0297 (10)
H1D0.67880.90340.48040.036*
H1E0.54240.94390.57060.036*
C20.6064 (6)1.1033 (4)0.4585 (4)0.0279 (10)
H20.50341.14530.43990.033*
C30.7182 (6)1.1271 (5)0.3513 (4)0.0395 (12)
H3A0.67551.08380.28050.059*
H3B0.72871.22340.3370.059*
H3C0.82081.0890.36930.059*
O40.4637 (5)1.1248 (4)0.7586 (3)0.0470 (10)
H4A0.416 (6)1.051 (4)0.756 (5)0.056*
H4B0.504 (7)1.139 (6)0.823 (3)0.056*
S10.58065 (14)0.52359 (11)0.42411 (8)0.0227 (3)
S20.71520 (15)0.62866 (13)0.30848 (10)0.0345 (3)
O10.4704 (4)0.6186 (3)0.4861 (3)0.0320 (8)
O20.4877 (4)0.4177 (3)0.3584 (3)0.0315 (8)
O30.6842 (4)0.4564 (3)0.5152 (3)0.0313 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.026 (2)0.025 (2)0.0307 (19)0.0008 (16)0.0015 (15)0.0006 (15)
N20.030 (2)0.028 (2)0.0324 (19)0.0012 (17)0.0004 (16)0.0009 (17)
C10.028 (2)0.032 (3)0.029 (2)0.003 (2)0.0028 (19)0.0031 (19)
C20.028 (3)0.028 (3)0.028 (2)0.002 (2)0.0042 (18)0.0014 (18)
C30.038 (3)0.044 (3)0.037 (2)0.003 (3)0.002 (2)0.006 (2)
O40.052 (3)0.058 (2)0.0309 (18)0.013 (2)0.0007 (17)0.0057 (19)
S10.0241 (5)0.0237 (5)0.0204 (5)0.0005 (5)0.0008 (4)0.0005 (4)
S20.0345 (7)0.0368 (7)0.0322 (6)0.0021 (6)0.0086 (5)0.0060 (5)
O10.0352 (19)0.0282 (17)0.0325 (16)0.0063 (15)0.0087 (13)0.0004 (14)
O20.0310 (18)0.0339 (18)0.0296 (15)0.0085 (15)0.0013 (14)0.0054 (13)
O30.0355 (19)0.0273 (17)0.0311 (15)0.0003 (15)0.0073 (13)0.0051 (13)
Geometric parameters (Å, º) top
N1—C11.501 (5)C2—C31.530 (6)
N1—H1A0.89C2—H20.98
N1—H1B0.89C3—H3A0.96
N1—H1C0.89C3—H3B0.96
N2—C21.508 (5)C3—H3C0.96
N2—H2A0.89O4—H4A0.83 (3)
N2—H2B0.89O4—H4B0.80 (2)
N2—H2C0.89S1—O11.481 (3)
C1—C21.526 (6)S1—O31.484 (3)
C1—H1D0.97S1—O21.487 (3)
C1—H1E0.97S1—S21.9924 (15)
C1—N1—H1A109.5N2—C2—C3109.4 (4)
C1—N1—H1B109.5C1—C2—C3113.7 (4)
H1A—N1—H1B109.5N2—C2—H2108.5
C1—N1—H1C109.5C1—C2—H2108.5
H1A—N1—H1C109.5C3—C2—H2108.5
H1B—N1—H1C109.5C2—C3—H3A109.5
C2—N2—H2A109.5C2—C3—H3B109.5
C2—N2—H2B109.5H3A—C3—H3B109.5
H2A—N2—H2B109.5C2—C3—H3C109.5
C2—N2—H2C109.5H3A—C3—H3C109.5
H2A—N2—H2C109.5H3B—C3—H3C109.5
H2B—N2—H2C109.5H4A—O4—H4B112 (6)
N1—C1—C2110.7 (3)O1—S1—O3109.40 (18)
N1—C1—H1D109.5O1—S1—O2109.51 (19)
C2—C1—H1D109.5O3—S1—O2109.32 (19)
N1—C1—H1E109.5O1—S1—S2109.14 (13)
C2—C1—H1E109.5O3—S1—S2109.29 (14)
H1D—C1—H1E108.1O2—S1—S2110.17 (13)
N2—C2—C1108.1 (3)
N1—C1—C2—N2158.1 (4)N1—C1—C2—C380.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.032.888 (5)163
N1—H1B···O10.891.962.827 (5)164
N1—H1C···O2ii0.892.072.939 (4)167
N2—H2A···O40.891.882.772 (5)175
N2—H2B···O3iii0.891.972.855 (5)175
N2—H2C···O2iv0.892.012.892 (5)171
C1—H1D···O1iv0.972.493.374 (6)152
O4—H4A···S2i0.83 (3)2.54 (3)3.327 (4)159 (5)
O4—H4B···O1v0.80 (2)2.13 (3)2.875 (5)155 (6)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+3/2, z+1; (v) x+1, y+1/2, z+3/2.
(Comp_1b) top
Crystal data top
O3S22·C3H12N22+·H2OF(000) = 440
Mr = 206.28Dx = 1.526 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1306 reflections
a = 8.3714 (6) Åθ = 2.8–28.7°
b = 9.7607 (10) ŵ = 0.57 mm1
c = 10.9874 (12) ÅT = 120 K
V = 897.79 (15) Å3Block, colourless
Z = 40.41 × 0.35 × 0.2 mm
Data collection top
KUMA KM4CCD, Sapphire2, large Be window
diffractometer
1506 independent reflections
Graphite monochromator1361 reflections with I > 2σ(I)
Detector resolution: 8.19 pixels mm-1Rint = 0.027
ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 93
Tmin = 0.752, Tmax = 1k = 1011
2086 measured reflectionsl = 136
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7203P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1506 reflectionsΔρmax = 0.51 e Å3
109 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5434 (5)0.1096 (4)0.5972 (4)0.0124 (10)
H1A0.63770.0640.58970.019*
H1B0.50780.10260.67520.019*
H1C0.55810.19950.57820.019*
N20.3265 (5)0.1711 (4)0.4289 (4)0.0150 (10)
H2A0.39030.15290.36380.023*
H2B0.22660.1380.41450.023*
H2C0.32150.26320.44080.023*
C10.4223 (7)0.0480 (6)0.5123 (5)0.0166 (12)
H1D0.46030.05730.42730.02*
H1E0.32020.09840.51970.02*
C20.3949 (7)0.1030 (6)0.5413 (5)0.0159 (13)
H20.50020.14630.56040.019*
C30.2819 (7)0.1261 (6)0.6492 (5)0.0196 (13)
H3A0.32620.08210.7220.029*
H3B0.17720.08640.63080.029*
H3C0.27020.22460.66390.029*
O40.5386 (5)0.1246 (5)0.2407 (4)0.0221 (10)
H4A0.590 (8)0.050 (7)0.246 (6)0.026*
H4B0.509 (8)0.143 (7)0.180 (6)0.026*
S10.41899 (17)0.47686 (14)0.57586 (12)0.0135 (3)
S20.28471 (17)0.36996 (15)0.69154 (13)0.0171 (4)
O10.5316 (4)0.3821 (4)0.5128 (3)0.0145 (9)
O20.5124 (4)0.5842 (4)0.6421 (3)0.0155 (9)
O30.3140 (4)0.5444 (4)0.4837 (3)0.0165 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.010 (2)0.010 (2)0.017 (2)0.0018 (19)0.001 (2)0.0014 (18)
N20.011 (2)0.013 (2)0.021 (2)0.002 (2)0.002 (2)0.002 (2)
C10.011 (3)0.021 (3)0.017 (3)0.001 (3)0.001 (3)0.002 (2)
C20.012 (3)0.019 (3)0.016 (3)0.000 (2)0.003 (3)0.000 (2)
C30.013 (3)0.020 (3)0.025 (3)0.002 (3)0.004 (3)0.003 (3)
O40.023 (3)0.025 (2)0.018 (2)0.006 (2)0.003 (2)0.001 (2)
S10.0085 (6)0.0166 (7)0.0155 (7)0.0006 (6)0.0005 (6)0.0003 (6)
S20.0128 (7)0.0196 (7)0.0190 (7)0.0016 (7)0.0034 (7)0.0021 (6)
O10.0113 (19)0.0150 (19)0.0171 (19)0.0023 (17)0.0022 (17)0.0017 (17)
O20.0118 (19)0.017 (2)0.0179 (19)0.0036 (17)0.0020 (18)0.0029 (16)
O30.013 (2)0.016 (2)0.0205 (19)0.0017 (17)0.0023 (18)0.0002 (17)
Geometric parameters (Å, º) top
N1—C11.503 (7)C2—C31.534 (8)
N1—H1A0.91C2—H21
N1—H1B0.91C3—H3A0.98
N1—H1C0.91C3—H3B0.98
N2—C21.514 (7)C3—H3C0.98
N2—H2A0.91O4—H4A0.85 (7)
N2—H2B0.91O4—H4B0.74 (6)
N2—H2C0.91S1—O11.491 (4)
C1—C21.526 (8)S1—O31.494 (4)
C1—H1D0.99S1—O21.496 (4)
C1—H1E0.99S1—S21.9920 (19)
C1—N1—H1A109.5N2—C2—C3109.4 (4)
C1—N1—H1B109.5C1—C2—C3113.3 (5)
H1A—N1—H1B109.5N2—C2—H2108.6
C1—N1—H1C109.5C1—C2—H2108.6
H1A—N1—H1C109.5C3—C2—H2108.6
H1B—N1—H1C109.5C2—C3—H3A109.5
C2—N2—H2A109.5C2—C3—H3B109.5
C2—N2—H2B109.5H3A—C3—H3B109.5
H2A—N2—H2B109.5C2—C3—H3C109.5
C2—N2—H2C109.5H3A—C3—H3C109.5
H2A—N2—H2C109.5H3B—C3—H3C109.5
H2B—N2—H2C109.5H4A—O4—H4B116 (7)
N1—C1—C2111.0 (4)O1—S1—O3109.3 (2)
N1—C1—H1D109.4O1—S1—O2109.3 (2)
C2—C1—H1D109.4O3—S1—O2109.1 (2)
N1—C1—H1E109.4O1—S1—S2109.17 (16)
C2—C1—H1E109.4O3—S1—S2109.37 (16)
H1D—C1—H1E108O2—S1—S2110.58 (17)
N2—C2—C1108.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.911.992.861 (6)160
N1—H1B···O2ii0.912.022.913 (6)166
N1—H1C···O10.911.932.819 (6)163
N2—H2A···O40.911.862.763 (6)174
N2—H2B···O2iii0.911.972.871 (6)170
N2—H2C···O3iv0.911.942.843 (6)174
C1—H1E···O1iii0.992.453.353 (7)152
O4—H4A···S2i0.85 (7)2.49 (7)3.313 (5)163 (6)
O4—H4B···O1v0.74 (6)2.15 (6)2.848 (6)157 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x, y1, z; (v) x+1, y1/2, z+1/2.
(Comp_2) top
Crystal data top
O3S22·C3H12N22+·H2OF(000) = 880
Mr = 206.28Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3409 reflections
a = 15.4097 (8) Åθ = 2.5–28.6°
b = 8.0868 (4) ŵ = 0.56 mm1
c = 15.4133 (13) ÅT = 120 K
β = 108.249 (6)°Needle, colourless
V = 1824.1 (2) Å30.37 × 0.09 × 0.07 mm
Z = 8
Data collection top
KUMA KM4CCD, Sapphire2, large Be window
diffractometer
3262 independent reflections
Graphite monochromator2918 reflections with I > 2σ(I)
Detector resolution: 8.19 pixels mm-1Rint = 0.025
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1118
Tmin = 0.913, Tmax = 1k = 99
5760 measured reflectionsl = 1818
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.5404P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3262 reflectionsΔρmax = 0.63 e Å3
219 parametersΔρmin = 0.44 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H7P0.255 (2)0.654 (5)0.176 (3)0.025 (12)*
H7Q0.327 (4)0.710 (7)0.167 (3)0.07 (2)*
H8P0.840 (2)0.693 (5)0.180 (3)0.028 (9)*
H8Q0.819 (3)0.665 (5)0.247 (2)0.028 (9)*
S10.01304 (6)0.73538 (11)0.12420 (6)0.0158 (2)
S20.09108 (6)0.53199 (11)0.15945 (7)0.0217 (2)
O10.08397 (17)0.6845 (3)0.08589 (18)0.0228 (6)
O20.04020 (18)0.8281 (3)0.05278 (17)0.0236 (6)
O30.02674 (18)0.8399 (3)0.20510 (17)0.0244 (6)
S30.62242 (6)0.23787 (12)0.01295 (6)0.0163 (2)
S40.66471 (7)0.04351 (11)0.09647 (7)0.0236 (3)
O40.5963 (2)0.1828 (3)0.08354 (17)0.0278 (7)
O50.54289 (18)0.3150 (3)0.03166 (18)0.0258 (6)
O60.69507 (18)0.3630 (3)0.02933 (19)0.0269 (6)
N10.6103 (2)0.6270 (4)0.13009 (19)0.0196 (7)
H1A0.5730.70840.09820.029*
H1B0.60090.53290.0960.029*
H1C0.66960.65910.14310.029*
N20.6200 (2)0.8364 (4)0.4365 (2)0.0212 (7)
H2A0.68180.8470.4520.032*
H2B0.60440.80950.48690.032*
H2C0.5930.93370.41310.032*
C10.5895 (3)0.5948 (5)0.2172 (2)0.0219 (8)
H1D0.62720.50120.24980.026*
H1E0.52440.56350.2030.026*
C20.6087 (3)0.7453 (4)0.2779 (3)0.0187 (8)
H2D0.56970.83840.24660.022*
H2E0.67340.77860.29150.022*
C30.5889 (3)0.7041 (5)0.3668 (3)0.0225 (8)
H3A0.52230.68750.35350.027*
H3B0.61980.59930.39190.027*
N30.4329 (2)0.1615 (4)0.1242 (2)0.0190 (7)
H3C0.44370.16670.18560.028*
H3D0.48490.18740.11110.028*
H3E0.4150.05730.10410.028*
N40.1356 (2)0.1252 (4)0.1087 (2)0.0203 (7)
H4A0.14510.150.16860.03*
H4B0.10450.0280.09490.03*
H4C0.10230.20720.0730.03*
C40.3591 (2)0.2815 (5)0.0775 (3)0.0200 (8)
H4D0.33920.25980.0110.024*
H4E0.38420.3950.08760.024*
C50.2766 (2)0.2717 (4)0.1111 (3)0.0177 (8)
H5A0.2970.29090.17780.021*
H5B0.23390.36180.08220.021*
C60.2256 (2)0.1093 (5)0.0916 (3)0.0203 (8)
H6A0.21550.07710.02720.024*
H6B0.26240.02180.13130.024*
O70.3042 (2)0.6953 (4)0.2029 (2)0.0331 (7)
O80.7963 (2)0.7016 (4)0.1951 (2)0.0314 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0167 (5)0.0170 (4)0.0128 (5)0.0005 (4)0.0033 (4)0.0004 (4)
S20.0206 (5)0.0172 (5)0.0235 (6)0.0033 (4)0.0015 (4)0.0013 (4)
O10.0182 (13)0.0211 (14)0.0263 (15)0.0018 (11)0.0029 (11)0.0002 (12)
O20.0306 (15)0.0237 (14)0.0184 (14)0.0002 (12)0.0105 (12)0.0030 (12)
O30.0293 (14)0.0276 (15)0.0142 (14)0.0045 (12)0.0039 (11)0.0043 (12)
S30.0165 (5)0.0180 (4)0.0130 (6)0.0000 (4)0.0028 (4)0.0002 (4)
S40.0303 (6)0.0188 (5)0.0172 (6)0.0008 (4)0.0011 (4)0.0019 (4)
O40.0443 (18)0.0243 (14)0.0123 (14)0.0043 (13)0.0052 (12)0.0007 (12)
O50.0210 (14)0.0282 (15)0.0295 (16)0.0047 (12)0.0100 (12)0.0047 (13)
O60.0197 (13)0.0233 (14)0.0356 (17)0.0033 (12)0.0056 (11)0.0025 (13)
N10.0256 (17)0.0181 (16)0.0129 (16)0.0017 (14)0.0027 (13)0.0032 (13)
N20.0196 (16)0.0247 (18)0.0181 (17)0.0017 (13)0.0043 (13)0.0024 (14)
C10.026 (2)0.0219 (19)0.017 (2)0.0022 (17)0.0068 (16)0.0032 (16)
C20.0172 (19)0.0190 (18)0.020 (2)0.0030 (15)0.0054 (15)0.0034 (15)
C30.0203 (19)0.023 (2)0.024 (2)0.0040 (16)0.0059 (16)0.0020 (17)
N30.0174 (15)0.0228 (16)0.0155 (16)0.0019 (13)0.0036 (13)0.0004 (13)
N40.0186 (16)0.0213 (16)0.0182 (17)0.0005 (13)0.0016 (13)0.0020 (14)
C40.0207 (19)0.0193 (19)0.018 (2)0.0014 (16)0.0038 (15)0.0033 (16)
C50.0183 (19)0.0159 (18)0.017 (2)0.0008 (15)0.0029 (15)0.0002 (15)
C60.0189 (18)0.0196 (18)0.021 (2)0.0018 (16)0.0039 (15)0.0036 (16)
O70.0317 (17)0.046 (2)0.0199 (17)0.0121 (16)0.0058 (14)0.0012 (15)
O80.0227 (15)0.0455 (19)0.0256 (18)0.0020 (14)0.0069 (13)0.0100 (15)
Geometric parameters (Å, º) top
S1—O31.466 (3)C3—H3A0.99
S1—O11.483 (3)C3—H3B0.99
S1—O21.496 (3)N3—C41.497 (5)
S1—S22.0094 (13)N3—H3C0.91
S3—O61.471 (3)N3—H3D0.91
S3—O51.482 (3)N3—H3E0.91
S3—O41.482 (3)N4—C61.496 (4)
S3—S42.0066 (13)N4—H4A0.91
N1—C11.497 (5)N4—H4B0.91
N1—H1A0.91N4—H4C0.91
N1—H1B0.91C4—C51.516 (5)
N1—H1C0.91C4—H4D0.99
N2—C31.485 (5)C4—H4E0.99
N2—H2A0.91C5—C61.512 (5)
N2—H2B0.91C5—H5A0.99
N2—H2C0.91C5—H5B0.99
C1—C21.507 (5)C6—H6A0.99
C1—H1D0.99C6—H6B0.99
C1—H1E0.99O7—H7P0.81 (2)
C2—C31.532 (5)O7—H7Q0.76 (3)
C2—H2D0.99O8—H8P0.79 (2)
C2—H2E0.99O8—H8Q0.83 (3)
O3—S1—O1110.94 (16)N2—C3—H3A109.1
O3—S1—O2109.75 (16)C2—C3—H3A109.1
O1—S1—O2108.99 (16)N2—C3—H3B109.1
O3—S1—S2109.11 (12)C2—C3—H3B109.1
O1—S1—S2108.89 (12)H3A—C3—H3B107.9
O2—S1—S2109.13 (12)C4—N3—H3C109.5
O6—S3—O5107.96 (16)C4—N3—H3D109.5
O6—S3—O4109.39 (16)H3C—N3—H3D109.5
O5—S3—O4109.92 (17)C4—N3—H3E109.5
O6—S3—S4110.60 (12)H3C—N3—H3E109.5
O5—S3—S4109.10 (12)H3D—N3—H3E109.5
O4—S3—S4109.86 (12)C6—N4—H4A109.5
C1—N1—H1A109.5C6—N4—H4B109.5
C1—N1—H1B109.5H4A—N4—H4B109.5
H1A—N1—H1B109.5C6—N4—H4C109.5
C1—N1—H1C109.5H4A—N4—H4C109.5
H1A—N1—H1C109.5H4B—N4—H4C109.5
H1B—N1—H1C109.5N3—C4—C5113.2 (3)
C3—N2—H2A109.5N3—C4—H4D108.9
C3—N2—H2B109.5C5—C4—H4D108.9
H2A—N2—H2B109.5N3—C4—H4E108.9
C3—N2—H2C109.5C5—C4—H4E108.9
H2A—N2—H2C109.5H4D—C4—H4E107.7
H2B—N2—H2C109.5C6—C5—C4114.7 (3)
N1—C1—C2111.2 (3)C6—C5—H5A108.6
N1—C1—H1D109.4C4—C5—H5A108.6
C2—C1—H1D109.4C6—C5—H5B108.6
N1—C1—H1E109.4C4—C5—H5B108.6
C2—C1—H1E109.4H5A—C5—H5B107.6
H1D—C1—H1E108N4—C6—C5110.1 (3)
C1—C2—C3108.9 (3)N4—C6—H6A109.6
C1—C2—H2D109.9C5—C6—H6A109.6
C3—C2—H2D109.9N4—C6—H6B109.6
C1—C2—H2E109.9C5—C6—H6B109.6
C3—C2—H2E109.9H6A—C6—H6B108.2
H2D—C2—H2E108.3H7P—O7—H7Q105 (6)
N2—C3—C2112.3 (3)H8P—O8—H8Q97 (4)
N1—C1—C2—C3178.5 (3)N3—C4—C5—C664.3 (4)
C1—C2—C3—N2170.8 (3)C4—C5—C6—N4167.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8Q···S4i0.83 (3)2.54 (3)3.332 (3)162 (4)
O8—H8P···O1ii0.79 (2)2.13 (3)2.865 (4)156 (4)
N1—H1A···O5iii0.912.232.885 (4)128
N1—H1B···O50.912.082.959 (4)162
N1—H1B···O60.912.453.154 (4)135
N1—H1C···O80.911.92.790 (4)167
N2—H2A···O6i0.911.832.739 (4)174
N2—H2B···O2iv0.911.972.807 (4)152
N2—H2C···S2v0.912.823.501 (3)133
N2—H2C···O1v0.912.032.869 (4)152
C1—H1E···O3vi0.992.573.199 (4)122
N3—H3C···S2vi0.912.823.623 (3)147
N3—H3C···O3vi0.912.132.893 (4)141
N3—H3D···O50.912.012.822 (4)148
N3—H3E···O4vii0.911.972.858 (4)166
N4—H4A···O7vi0.911.922.816 (4)166
N4—H4B···O2viii0.911.92.807 (4)174
N4—H4C···O1ix0.912.533.241 (4)135
N4—H4C···O2ix0.912.453.074 (4)126
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1, y, z; (viii) x, y1, z; (ix) x, y+1, z.
(Comp_3) top
Crystal data top
C4H14N22+·O3S22Z = 2
Mr = 202.29F(000) = 216
Triclinic, P1Dx = 1.46 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0538 (5) ÅCell parameters from 1508 reflections
b = 8.5273 (6) Åθ = 2.5–28.4°
c = 9.3869 (8) ŵ = 0.55 mm1
α = 73.623 (7)°T = 120 K
β = 82.681 (7)°Prism, colourless
γ = 84.207 (7)°0.56 × 0.41 × 0.33 mm
V = 460.05 (7) Å3
Data collection top
KUMA KM4CCD, Sapphire2, large Be window
diffractometer
1416 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.0°, θmin = 2.5°
Tmin = 0.775, Tmax = 1h = 77
2675 measured reflectionsk = 1010
1786 independent reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.0795P]
where P = (Fo2 + 2Fc2)/3
1786 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19150 (15)0.58523 (11)0.21277 (10)0.0172 (3)
S20.04846 (16)0.73096 (12)0.28715 (11)0.0212 (3)
O10.2464 (4)0.6464 (3)0.0488 (3)0.0226 (6)
O20.3934 (4)0.5821 (3)0.2891 (3)0.0200 (6)
O30.1141 (5)0.4167 (3)0.2488 (3)0.0263 (7)
N10.7111 (6)0.3423 (4)0.4243 (4)0.0192 (7)
N20.2882 (5)0.2887 (4)0.0020 (4)0.0184 (7)
C10.4968 (6)0.0908 (4)0.4985 (4)0.0193 (8)
H1A0.37070.15150.44420.023*
H1B0.47140.10070.60190.023*
C20.7139 (7)0.1667 (4)0.4227 (4)0.0225 (9)
H2A0.84050.10350.47480.027*
H2B0.73660.16020.31820.027*
C30.4747 (6)0.0068 (4)0.0796 (4)0.0180 (8)
H3A0.60420.05010.1070.022*
H3B0.4550.1040.14790.022*
C40.2660 (6)0.1176 (4)0.1023 (4)0.0206 (8)
H4A0.13410.07180.08050.025*
H4B0.24230.1210.20770.025*
H2N0.430 (4)0.320 (4)0.010 (4)0.012 (9)*
H2Q0.196 (6)0.354 (5)0.050 (4)0.026 (11)*
H1N0.598 (6)0.407 (5)0.378 (5)0.034 (12)*
H1M0.681 (9)0.351 (6)0.519 (3)0.053 (16)*
H2M0.258 (9)0.304 (7)0.094 (4)0.070 (19)*
H1Q0.848 (5)0.379 (6)0.384 (5)0.047 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0190 (5)0.0162 (5)0.0176 (5)0.0002 (4)0.0032 (4)0.0063 (4)
S20.0226 (5)0.0208 (5)0.0223 (5)0.0043 (4)0.0057 (4)0.0099 (4)
O10.0258 (15)0.0245 (15)0.0159 (13)0.0025 (12)0.0033 (11)0.0020 (11)
O20.0186 (14)0.0224 (14)0.0202 (14)0.0041 (11)0.0076 (11)0.0075 (11)
O30.0298 (16)0.0194 (15)0.0318 (16)0.0038 (12)0.0042 (12)0.0130 (12)
N10.0214 (18)0.0153 (17)0.0221 (18)0.0005 (14)0.0057 (14)0.0057 (14)
N20.0206 (18)0.0135 (16)0.0204 (17)0.0015 (13)0.0012 (14)0.0049 (14)
C10.026 (2)0.015 (2)0.0163 (18)0.0001 (16)0.0044 (16)0.0033 (15)
C20.026 (2)0.016 (2)0.026 (2)0.0004 (16)0.0003 (17)0.0084 (17)
C30.026 (2)0.0134 (18)0.0147 (19)0.0006 (15)0.0023 (15)0.0040 (15)
C40.026 (2)0.0150 (19)0.0208 (19)0.0025 (16)0.0004 (16)0.0053 (16)
Geometric parameters (Å, º) top
S1—O11.485 (3)C1—C21.525 (5)
S1—O21.487 (3)C1—C1i1.537 (7)
S1—O31.491 (3)C1—H1A0.99
S1—S22.0021 (13)C1—H1B0.99
N1—C21.500 (5)C2—H2A0.99
N1—H1N0.91 (3)C2—H2B0.99
N1—H1M0.91 (3)C3—C3ii1.522 (7)
N1—H1Q0.91 (3)C3—C41.529 (5)
N2—C41.505 (5)C3—H3A0.99
N2—H2N0.91 (2)C3—H3B0.99
N2—H2Q0.91 (2)C4—H4A0.99
N2—H2M0.91 (3)C4—H4B0.99
O1—S1—O2109.55 (15)C2—C1—H1B109.3
O1—S1—O3108.95 (16)C1i—C1—H1B109.3
O2—S1—O3109.82 (16)H1A—C1—H1B108
O1—S1—S2111.03 (11)N1—C2—C1111.6 (3)
O2—S1—S2108.18 (11)N1—C2—H2A109.3
O3—S1—S2109.30 (12)C1—C2—H2A109.3
C2—N1—H1N114 (3)N1—C2—H2B109.3
C2—N1—H1M110 (3)C1—C2—H2B109.3
H1N—N1—H1M102 (4)H2A—C2—H2B108
C2—N1—H1Q107 (3)C3ii—C3—C4113.5 (4)
H1N—N1—H1Q112 (4)C3ii—C3—H3A108.9
H1M—N1—H1Q111 (4)C4—C3—H3A108.9
C4—N2—H2N112 (2)C3ii—C3—H3B108.9
C4—N2—H2Q105 (3)C4—C3—H3B108.9
H2N—N2—H2Q109 (3)H3A—C3—H3B107.7
C4—N2—H2M116 (4)N2—C4—C3111.1 (3)
H2N—N2—H2M103 (4)N2—C4—H4A109.4
H2Q—N2—H2M112 (4)C3—C4—H4A109.4
C2—C1—C1i111.5 (4)N2—C4—H4B109.4
C2—C1—H1A109.3C3—C4—H4B109.4
C1i—C1—H1A109.3H4A—C4—H4B108
C1i—C1—C2—N1178.0 (4)C3ii—C3—C4—N259.2 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.91 (3)1.91 (3)2.803 (4)167 (4)
N1—H1M···O2iii0.91 (3)2.02 (3)2.918 (4)169 (5)
N1—H1Q···O3iv0.91 (3)1.91 (3)2.787 (4)160 (5)
N2—H2N···O1v0.91 (2)1.98 (3)2.880 (4)170 (3)
N2—H2Q···O30.91 (2)2.07 (3)2.870 (4)145 (3)
N2—H2Q···O10.91 (2)2.54 (4)3.183 (4)128 (3)
N2—H2M···S2vi0.91 (3)2.44 (3)3.288 (3)155 (5)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z.
(Comp_4) top
Crystal data top
C5H16N22+·O3S22·0.5(O)Dx = 1.317 Mg m3
Mr = 224.32Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 2539 reflections
Hall symbol: P 4nw 2abwθ = 3.9–26.1°
a = 11.7872 (9) ŵ = 0.45 mm1
c = 16.2851 (14) ÅT = 120 K
V = 2262.6 (4) Å3Needle, colourless
Z = 80.36 × 0.06 × 0.04 mm
F(000) = 960
Data collection top
STOE IPDS 2T
diffractometer
1762 reflections with I > 2σ(I)
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocusRint = 0.076
Parabolic x-ray mirror monochromatorθmax = 25.1°, θmin = 2.4°
Detector resolution: 6.67 pixels mm-1h = 1414
rotation method scansk = 1414
15572 measured reflectionsl = 1919
2008 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.1379P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.167(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.90 e Å3
2008 reflectionsΔρmin = 0.68 e Å3
117 parametersAbsolute structure: Flack x determined using 669 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.00 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7463 (5)0.0554 (4)0.0691 (3)0.0210 (11)
H1A0.78560.05390.02110.025*
H1B0.68710.10460.06460.025*
H1C0.79290.07860.11040.025*
N20.4337 (4)0.2722 (4)0.3846 (3)0.0203 (11)
H2A0.39840.20380.38890.024*
H2B0.38230.32870.39260.024*
H2C0.48940.27710.42310.024*
C10.7025 (6)0.0601 (5)0.0878 (4)0.0256 (14)
H1D0.64460.08160.04660.031*
H1E0.76540.11570.08450.031*
C20.6504 (6)0.0631 (5)0.1734 (4)0.0230 (14)
H2D0.59080.00420.17720.028*
H2E0.70960.0450.21440.028*
C30.5990 (6)0.1776 (6)0.1935 (4)0.0252 (14)
H3A0.53760.19490.15390.03*
H3B0.65770.23720.18840.03*
C40.5510 (6)0.1781 (5)0.2806 (4)0.0233 (13)
H4A0.50110.11130.28760.028*
H4B0.61440.17080.32010.028*
C50.4849 (5)0.2835 (5)0.3004 (4)0.0234 (13)
H5A0.42410.29460.25920.028*
H5B0.53560.35040.29870.028*
S10.25562 (12)0.52205 (12)0.39555 (9)0.0183 (4)
S20.29084 (13)0.64220 (13)0.47934 (10)0.0225 (4)
O10.2426 (4)0.4114 (3)0.4374 (3)0.0221 (9)
O20.1517 (4)0.5515 (3)0.3516 (3)0.0236 (10)
O30.3515 (4)0.5164 (4)0.3367 (3)0.0230 (10)
O40.9579 (11)0.0803 (11)0.1533 (9)0.035 (3)*0.372 (8)
O4A0.9298 (17)0.0702 (17)0.250.035 (3)*0.255 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.027 (3)0.025 (2)0.011 (3)0.001 (2)0.001 (2)0.000 (2)
N20.023 (2)0.022 (3)0.017 (3)0.001 (2)0.0008 (19)0.001 (2)
C10.037 (4)0.027 (3)0.013 (3)0.006 (3)0.006 (3)0.001 (2)
C20.029 (3)0.027 (3)0.013 (3)0.001 (3)0.007 (2)0.000 (2)
C30.031 (3)0.025 (3)0.020 (3)0.003 (3)0.005 (3)0.002 (3)
C40.028 (3)0.025 (3)0.017 (3)0.001 (2)0.002 (3)0.001 (2)
C50.027 (3)0.028 (3)0.015 (3)0.001 (3)0.002 (2)0.001 (2)
S10.0215 (7)0.0183 (7)0.0150 (8)0.0013 (5)0.0013 (6)0.0009 (5)
S20.0291 (9)0.0203 (8)0.0182 (8)0.0021 (6)0.0011 (6)0.0008 (6)
O10.029 (2)0.018 (2)0.019 (2)0.0001 (17)0.0010 (19)0.0018 (18)
O20.025 (2)0.023 (2)0.024 (2)0.0018 (17)0.0027 (18)0.0015 (17)
O30.024 (2)0.030 (2)0.015 (2)0.0018 (18)0.0071 (18)0.0013 (18)
Geometric parameters (Å, º) top
N1—C11.488 (8)C2—H2E0.99
N1—H1A0.91C3—C41.526 (9)
N1—H1B0.91C3—H3A0.99
N1—H1C0.91C3—H3B0.99
N2—C51.503 (8)C4—C51.502 (9)
N2—H2A0.91C4—H4A0.99
N2—H2B0.91C4—H4B0.99
N2—H2C0.91C5—H5A0.99
C1—C21.524 (8)C5—H5B0.99
C1—H1D0.99S1—O21.461 (5)
C1—H1E0.99S1—O11.480 (4)
C2—C31.515 (9)S1—O31.483 (4)
C2—H2D0.99S1—S22.010 (2)
C1—N1—H1A109.5C2—C3—C4110.6 (5)
C1—N1—H1B109.5C2—C3—H3A109.5
H1A—N1—H1B109.5C4—C3—H3A109.5
C1—N1—H1C109.5C2—C3—H3B109.5
H1A—N1—H1C109.5C4—C3—H3B109.5
H1B—N1—H1C109.5H3A—C3—H3B108.1
C5—N2—H2A109.5C5—C4—C3113.3 (5)
C5—N2—H2B109.5C5—C4—H4A108.9
H2A—N2—H2B109.5C3—C4—H4A108.9
C5—N2—H2C109.5C5—C4—H4B108.9
H2A—N2—H2C109.5C3—C4—H4B108.9
H2B—N2—H2C109.5H4A—C4—H4B107.7
N1—C1—C2110.3 (5)C4—C5—N2109.3 (5)
N1—C1—H1D109.6C4—C5—H5A109.8
C2—C1—H1D109.6N2—C5—H5A109.8
N1—C1—H1E109.6C4—C5—H5B109.8
C2—C1—H1E109.6N2—C5—H5B109.8
H1D—C1—H1E108.1H5A—C5—H5B108.3
C3—C2—C1112.3 (5)O2—S1—O1110.4 (3)
C3—C2—H2D109.1O2—S1—O3109.4 (3)
C1—C2—H2D109.1O1—S1—O3109.7 (3)
C3—C2—H2E109.1O2—S1—S2109.80 (19)
C1—C2—H2E109.1O1—S1—S2109.3 (2)
H2D—C2—H2E107.9O3—S1—S2108.21 (19)
N1—C1—C2—C3177.0 (5)C2—C3—C4—C5172.1 (5)
C1—C2—C3—C4178.3 (6)C3—C4—C5—N2175.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.912.552.996 (7)111
N1—H1A···O3i0.911.972.863 (7)166
N1—H1B···O1ii0.9122.887 (7)165
N1—H1C···S2iii0.912.593.437 (6)155
N1—H1C···O3iii0.912.423.018 (7)123
C1—H1E···O40.992.563.202 (15)122
N2—H2A···O2iv0.911.92.798 (6)171
N2—H2B···O10.912.052.916 (7)159
N2—H2B···O30.912.423.136 (7)136
N2—H2C···S2v0.912.413.317 (6)178
N2—H2C···O1v0.912.482.932 (7)111
C2—H2D···O2ii0.992.533.499 (8)165
Symmetry codes: (i) x+1/2, y+1/2, z+1/4; (ii) y+1, x, z+1/2; (iii) y+3/2, x1/2, z1/4; (iv) x+1/2, y1/2, z+3/4; (v) y, x, z+1.
(Comp_5) top
Crystal data top
C6H18N22+·O3S22Z = 4
Mr = 230.34F(000) = 496
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4922 (10) ÅCell parameters from 4553 reflections
b = 11.1455 (11) Åθ = 3.6–28.6°
c = 11.7015 (12) ŵ = 0.45 mm1
α = 62.299 (7)°T = 120 K
β = 74.938 (8)°Prism, colourless
γ = 74.082 (8)°0.31 × 0.22 × 0.15 mm
V = 1150.9 (2) Å3
Data collection top
STOE IPDS 2T
diffractometer
3644 reflections with I > 2σ(I)
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocusRint = 0.114
Parabolic x-ray mirror monochromatorθmax = 25.1°, θmin = 2.5°
Detector resolution: 6.67 pixels mm-1h = 1212
rotation method scansk = 1213
4093 measured reflectionsl = 1313
4093 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0683P)2 + 7.9349P]
where P = (Fo2 + 2Fc2)/3
4093 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26220 (14)0.86841 (15)0.09295 (14)0.0149 (4)
S20.30555 (15)0.78301 (16)0.03202 (15)0.0200 (4)
O10.1145 (4)0.9036 (5)0.1245 (4)0.0207 (10)
O20.3199 (4)0.9946 (4)0.0361 (4)0.0211 (10)
O30.3168 (5)0.7706 (5)0.2156 (4)0.0231 (10)
S30.22643 (14)0.42078 (15)0.63449 (14)0.0161 (4)
S40.20857 (16)0.58653 (17)0.66435 (18)0.0252 (4)
O40.3710 (4)0.3706 (4)0.5994 (4)0.0207 (10)
O50.1726 (5)0.3093 (5)0.7523 (4)0.0282 (11)
O60.1568 (5)0.4567 (5)0.5254 (5)0.0271 (11)
N10.0201 (5)0.1987 (5)0.0016 (5)0.0170 (11)
H1C0.06130.24530.08410.026*
H1D0.06630.19970.00370.026*
H1E0.06430.11010.03190.026*
N20.4619 (5)0.5007 (5)0.3260 (5)0.0170 (11)
H2C0.41450.58820.30010.025*
H2D0.5490.50150.32380.025*
H2E0.42630.44780.40880.025*
C10.0218 (6)0.2662 (7)0.0822 (6)0.0208 (13)
H1A0.00010.2030.17530.025*
H1B0.04780.35060.06290.025*
C20.1572 (6)0.3034 (7)0.0592 (6)0.0202 (13)
H2A0.17440.37450.03120.024*
H2B0.22780.22090.06860.024*
C30.1652 (6)0.3575 (7)0.1547 (6)0.0198 (13)
H3A0.09830.44320.1410.024*
H3B0.14130.28890.2450.024*
C40.3027 (6)0.3869 (6)0.1404 (6)0.0187 (13)
H4A0.32320.46170.05290.022*
H4B0.37080.30360.14620.022*
C50.3128 (6)0.4289 (7)0.2446 (6)0.0186 (13)
H5A0.25220.5180.23280.022*
H5B0.28350.35890.33230.022*
C60.4550 (6)0.4426 (7)0.2360 (6)0.0208 (13)
H6A0.51360.35090.25910.025*
H6B0.48850.50340.14520.025*
N30.0282 (5)0.2722 (5)0.6117 (5)0.0197 (11)
H3C0.06820.23370.69630.03*
H3D0.09130.3310.56070.03*
H3E0.03360.31930.60550.03*
N40.5354 (5)0.1129 (5)0.2100 (5)0.0164 (10)
H4C0.58750.18690.26420.025*
H4D0.58730.06880.13310.025*
H4E0.47110.14180.19460.025*
C70.0390 (6)0.1626 (7)0.5673 (6)0.0235 (14)
H7A0.07420.2050.47280.028*
H7B0.02710.10710.58020.028*
C80.1535 (6)0.0694 (6)0.6420 (6)0.0211 (13)
H8A0.11720.02380.73590.025*
H8B0.21670.1260.63290.025*
C90.2296 (7)0.0411 (7)0.5933 (6)0.0233 (14)
H9A0.28880.1110.65670.028*
H9B0.16430.08790.58920.028*
C100.3141 (7)0.0184 (7)0.4589 (7)0.0226 (14)
H10A0.25460.08990.39660.027*
H10B0.37980.0640.4640.027*
C110.3894 (6)0.0867 (6)0.4053 (6)0.0209 (13)
H11A0.45010.15850.46620.025*
H11B0.32480.13170.39760.025*
C120.4707 (6)0.0168 (6)0.2721 (6)0.0186 (13)
H12A0.4110.06140.21460.022*
H12B0.54070.02040.28190.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0123 (7)0.0178 (8)0.0155 (8)0.0023 (5)0.0033 (5)0.0074 (6)
S20.0178 (8)0.0243 (8)0.0199 (8)0.0044 (6)0.0000 (6)0.0121 (7)
O10.012 (2)0.030 (3)0.021 (2)0.0018 (18)0.0006 (17)0.013 (2)
O20.026 (2)0.019 (2)0.019 (2)0.0097 (18)0.0012 (18)0.008 (2)
O30.026 (2)0.020 (2)0.017 (2)0.0007 (18)0.0063 (18)0.002 (2)
S30.0123 (7)0.0188 (8)0.0155 (8)0.0016 (6)0.0041 (5)0.0055 (6)
S40.0177 (8)0.0236 (9)0.0377 (10)0.0000 (6)0.0054 (7)0.0171 (8)
O40.015 (2)0.022 (2)0.023 (2)0.0022 (17)0.0042 (17)0.010 (2)
O50.038 (3)0.026 (3)0.018 (2)0.014 (2)0.003 (2)0.006 (2)
O60.025 (2)0.033 (3)0.027 (3)0.003 (2)0.013 (2)0.015 (2)
N10.016 (2)0.023 (3)0.017 (3)0.002 (2)0.005 (2)0.013 (2)
N20.015 (2)0.020 (3)0.018 (3)0.005 (2)0.005 (2)0.007 (2)
C10.023 (3)0.027 (3)0.018 (3)0.007 (3)0.003 (2)0.012 (3)
C20.018 (3)0.028 (3)0.017 (3)0.007 (3)0.004 (2)0.010 (3)
C30.023 (3)0.023 (3)0.013 (3)0.006 (3)0.004 (2)0.006 (3)
C40.024 (3)0.018 (3)0.017 (3)0.004 (2)0.005 (2)0.008 (3)
C50.018 (3)0.025 (3)0.017 (3)0.007 (2)0.000 (2)0.011 (3)
C60.019 (3)0.025 (3)0.021 (3)0.002 (3)0.003 (2)0.013 (3)
N30.013 (2)0.021 (3)0.021 (3)0.001 (2)0.001 (2)0.008 (2)
N40.015 (2)0.020 (3)0.013 (2)0.000 (2)0.0033 (19)0.008 (2)
C70.022 (3)0.031 (4)0.020 (3)0.004 (3)0.004 (3)0.017 (3)
C80.024 (3)0.019 (3)0.018 (3)0.002 (3)0.004 (3)0.008 (3)
C90.031 (4)0.018 (3)0.014 (3)0.000 (3)0.000 (3)0.005 (3)
C100.022 (3)0.021 (3)0.023 (3)0.003 (3)0.001 (3)0.010 (3)
C110.023 (3)0.019 (3)0.017 (3)0.006 (3)0.002 (3)0.006 (3)
C120.016 (3)0.016 (3)0.020 (3)0.000 (2)0.000 (2)0.008 (3)
Geometric parameters (Å, º) top
S1—O21.475 (4)C5—H5A0.99
S1—O11.482 (4)C5—H5B0.99
S1—O31.485 (4)C6—H6A0.99
S1—S21.991 (2)C6—H6B0.99
S3—O51.467 (5)N3—C71.479 (8)
S3—O61.473 (5)N3—H3C0.91
S3—O41.485 (4)N3—H3D0.91
S3—S41.987 (2)N3—H3E0.91
N1—C11.493 (8)N4—C121.485 (7)
N1—H1C0.91N4—H4C0.91
N1—H1D0.91N4—H4D0.91
N1—H1E0.91N4—H4E0.91
N2—C61.494 (8)C7—C81.518 (9)
N2—H2C0.91C7—H7A0.99
N2—H2D0.91C7—H7B0.99
N2—H2E0.91C8—C91.535 (8)
C1—C21.512 (8)C8—H8A0.99
C1—H1A0.99C8—H8B0.99
C1—H1B0.99C9—C101.525 (9)
C2—C31.524 (8)C9—H9A0.99
C2—H2A0.99C9—H9B0.99
C2—H2B0.99C10—C111.519 (9)
C3—C41.517 (9)C10—H10A0.99
C3—H3A0.99C10—H10B0.99
C3—H3B0.99C11—C121.519 (9)
C4—C51.530 (8)C11—H11A0.99
C4—H4A0.99C11—H11B0.99
C4—H4B0.99C12—H12A0.99
C5—C61.514 (8)C12—H12B0.99
O2—S1—O1109.2 (3)N2—C6—C5111.3 (5)
O2—S1—O3108.6 (3)N2—C6—H6A109.4
O1—S1—O3108.8 (3)C5—C6—H6A109.4
O2—S1—S2110.83 (19)N2—C6—H6B109.4
O1—S1—S2109.03 (19)C5—C6—H6B109.4
O3—S1—S2110.3 (2)H6A—C6—H6B108
O5—S3—O6110.0 (3)C7—N3—H3C109.5
O5—S3—O4108.1 (3)C7—N3—H3D109.5
O6—S3—O4108.6 (3)H3C—N3—H3D109.5
O5—S3—S4111.5 (2)C7—N3—H3E109.5
O6—S3—S4109.9 (2)H3C—N3—H3E109.5
O4—S3—S4108.75 (19)H3D—N3—H3E109.5
C1—N1—H1C109.5C12—N4—H4C109.5
C1—N1—H1D109.5C12—N4—H4D109.5
H1C—N1—H1D109.5H4C—N4—H4D109.5
C1—N1—H1E109.5C12—N4—H4E109.5
H1C—N1—H1E109.5H4C—N4—H4E109.5
H1D—N1—H1E109.5H4D—N4—H4E109.5
C6—N2—H2C109.5N3—C7—C8111.2 (5)
C6—N2—H2D109.5N3—C7—H7A109.4
H2C—N2—H2D109.5C8—C7—H7A109.4
C6—N2—H2E109.5N3—C7—H7B109.4
H2C—N2—H2E109.5C8—C7—H7B109.4
H2D—N2—H2E109.5H7A—C7—H7B108
N1—C1—C2111.4 (5)C7—C8—C9112.3 (5)
N1—C1—H1A109.3C7—C8—H8A109.1
C2—C1—H1A109.3C9—C8—H8A109.1
N1—C1—H1B109.3C7—C8—H8B109.1
C2—C1—H1B109.3C9—C8—H8B109.1
H1A—C1—H1B108H8A—C8—H8B107.9
C1—C2—C3111.9 (5)C10—C9—C8112.6 (5)
C1—C2—H2A109.2C10—C9—H9A109.1
C3—C2—H2A109.2C8—C9—H9A109.1
C1—C2—H2B109.2C10—C9—H9B109.1
C3—C2—H2B109.2C8—C9—H9B109.1
H2A—C2—H2B107.9H9A—C9—H9B107.8
C4—C3—C2113.4 (5)C11—C10—C9114.6 (5)
C4—C3—H3A108.9C11—C10—H10A108.6
C2—C3—H3A108.9C9—C10—H10A108.6
C4—C3—H3B108.9C11—C10—H10B108.6
C2—C3—H3B108.9C9—C10—H10B108.6
H3A—C3—H3B107.7H10A—C10—H10B107.6
C3—C4—C5112.8 (5)C12—C11—C10110.2 (5)
C3—C4—H4A109C12—C11—H11A109.6
C5—C4—H4A109C10—C11—H11A109.6
C3—C4—H4B109C12—C11—H11B109.6
C5—C4—H4B109C10—C11—H11B109.6
H4A—C4—H4B107.8H11A—C11—H11B108.1
C6—C5—C4111.2 (5)N4—C12—C11112.1 (5)
C6—C5—H5A109.4N4—C12—H12A109.2
C4—C5—H5A109.4C11—C12—H12A109.2
C6—C5—H5B109.4N4—C12—H12B109.2
C4—C5—H5B109.4C11—C12—H12B109.2
H5A—C5—H5B108H12A—C12—H12B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O5i0.911.892.786 (7)169
N1—H1D···O1ii0.912.412.971 (6)120
N1—H1D···S2ii0.912.43.296 (5)167
N1—H1E···O1iii0.912.022.905 (7)165
N2—H2C···O30.911.922.816 (7)169
N2—H2D···O4iv0.912.413.039 (6)127
N2—H2D···S4iv0.912.483.342 (5)159
N2—H2E···O40.911.972.848 (7)163
N3—H3C···O1v0.911.972.843 (7)161
N3—H3C···O3v0.912.553.193 (7)128
N3—H3D···O6v0.912.082.812 (7)136
N3—H3D···S4v0.912.853.648 (6)148
N3—H3E···O60.9122.874 (7)159
N3—H3E···O50.912.483.199 (7)137
N4—H4C···O4vi0.911.942.798 (7)156
N4—H4C···O5vi0.912.523.240 (7)137
N4—H4D···O2vii0.911.862.762 (7)170
N4—H4E···O3iii0.912.022.904 (7)164
N4—H4E···O2iii0.912.423.054 (7)127
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds