metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1342-m1343

Tris[4-(di­methyl­amino)­pyridinium][(bis-μ-di­chlorido)-deca­aqua­di­chlorido­dineodymium(III)] penta­chloride dihydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 28 September 2012; accepted 5 October 2012; online 10 October 2012)

The title compound, (C7H11N2)3[Nd2Cl4(H2O)10]Cl5·2H2O, consists of three 4-(dimethyl­amino)­pyridinium cations, one of which is disordered about an inversion center, one [Nd2Cl4(H2O)10]2+ dication possessing inversion symmetry, five chloride anions, one of which is disordered over two inversion centers, and two lattice water mol­ecules. The 4-(dimethyl­amino)­pyridinium cations are protonated at the pyridine N atoms and form N—H⋯Cl hydrogen bonds with Cl counter-ions. The dimethyl­amino groups (C/N/C) lie close to the plane of the pyridinium rings, making dihedral angles of 1.6 (6)° and 6.5 (3)°. In the crystal, the [Nd2Cl4(H2O)10]2+ dications are linked via O—H⋯O and O—H⋯Cl hydrogen bonds, forming sheets lying parallel to the bc plane. These sheets are linked via O—H⋯Cl hydrogen bonds, forming a three-dimensional network. The 4-(dimethyl­amino)­pyridinium cations are located in the cavities and linked to the framework by C—H⋯Cl interactions.

Related literature

For the crystal structures of complexes involving 4-(dimethyl­amino)­pyridinium, see: Chao et al. (1977[Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820-1823.]); Mayr-Stein & Bolte (2000[Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19-e20.]); Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.], 2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m13.]); Koon et al. (2009[Koon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.]); Benslimane et al. (2012[Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012). Acta Cryst. E68, m1321-m1322.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)3[Nd2Cl4(H2O)10]Cl5·2H2O

  • Mr = 1193.26

  • Triclinic, [P \overline 1]

  • a = 9.5172 (4) Å

  • b = 10.7739 (5) Å

  • c = 11.9976 (5) Å

  • α = 74.855 (4)°

  • β = 69.780 (4)°

  • γ = 85.075 (4)°

  • V = 1114.28 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.90 mm−1

  • T = 180 K

  • 0.36 × 0.22 × 0.16 mm

Data collection
  • Agilent Xcalibur Sapphire1 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.475, Tmax = 0.633

  • 23060 measured reflections

  • 4551 independent reflections

  • 4088 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.11

  • 4551 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H111⋯Cl4i 0.85 2.16 3.010 (3) 177
O11—H112⋯Cl11ii 0.85 2.30 3.149 (4) 173
O12—H121⋯Cl6iii 0.85 2.24 3.080 (3) 168
O12—H122⋯Cl3iv 0.85 2.25 3.089 (3) 171
O13—H131⋯O11 0.85 2.19 2.738 (6) 122
O13—H131⋯Cl4i 0.85 2.99 3.631 (6) 134
O13—H132⋯Cl4 0.85 2.16 3.005 (4) 172
O14—H142⋯Cl4iv 0.85 2.46 3.159 (4) 140
O14—H142⋯Cl11 0.85 2.73 3.210 (4) 118
O15—H151⋯O1W 0.85 1.84 2.683 (4) 172
O15—H152⋯Cl3 0.85 2.26 3.109 (3) 175
N12—H12⋯Cl11v 0.88 2.65 3.358 (5) 138
N12—H12⋯Cl11 0.88 2.78 3.451 (5) 134
O1W—H11W⋯Cl3vi 0.85 2.35 3.197 (3) 179
O1W—H12W⋯Cl6 0.85 2.52 3.349 (3) 167
N32—H32A⋯Cl4 0.88 2.26 3.0808 (16) 156
C34—H34⋯Cl1i 0.95 2.82 3.703 (3) 155
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z; (vi) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We report herein on the synthesis and crystal structure of a new hybrid organic-inorganic compound. It consists of alternating organic-inorganic layers characterized by isolated anions, as found with other compounds involving 4-(dimethylamino)pyridinium (Chao et al., 1977; Mayr-Stein & Bolte, 2000; Lo and Ng, 2008, 2009; Koon et al., 2009).

The asymmetric unit of the title compound contains one half of a centrosymmetric [Nd2Cl4(H2O)10]2+ dication, and one and one half 4-(dimethylamino)pyridinium cations, two and one half chloride anions, and one water molecule (Fig. 1). The organic cations consist of ordered (A) and disordered (B) entities (Fig. 1). They are protonated on the nitrogen atoms N12 and N32 of the pyridine rings. The organic entity (B) is disordered about an inversion center.

The two Nd atoms of the dication are linked by two bridging chloride atoms with an Nd1···Nd1i separation of 4.5158 (4)Å and an Nd1-Cl1-Nd1i angle of 105.74 (3)° (symmetry code: (i) -x+1, -y+1, -z) . Each NdIII atom is coordinated by the O atoms of five water molecules with the Nd-O distances ranging from 2.404 (3) to 2.479 (4) Å, and by three chloride ions with bond Nd1-Cl11 being 2.7851 (10) while the bridging Nd1-Cl1 and Nd1-Cl1i distances are 2.8298 (8) and 2.8345 (9) Å, respectively.

In the 4-(dimethylamino)pyridinium cations, the N-C bonds linking the dimethylamino substituent to the pyridinium ring are short [1.330 (5) and 1.2855 (12) Å], suggesting some delocalization in the cation. The dimethylamino groups (C16/N11/C17 and C36/N32/C37) lie close to the plane of their respective pyridinium rings, with dihedral angles of 1.6 (6) ° and 6.5 (3) °, respectively.

In the crystal, each Cl- anion accepts hydrogen bonds which can be divided into two groups. The first group involves hydrogen bonds linking atom Cl11 with two organic cations via the pyridinium N12-H12 H atom (Table 1), generating centrosymmetric R22(4) motifs (Bernstein et al., 1995) at y = 1/2, and this arrangement is analogous to that seen in (C7H10N2)2[LaCl(H2O)8]Cl4.3H2O (Benslimane et al., 2012). The second type of hydrogen bond, in which the Cl- anion is the acceptor, is a linkage between the (free and coordinated) water molecules and the Cl- anion which enlcose R24(12) ring motifs along direction [001] (Fig. 2 and Table. 1). The [Nd2Cl4(H2O)10]2+ dications are linked via O-H···O and O-H···Cl hydrogen bonds to form sheets lying parallel to the bc plane (Fig. 3). These sheets are linked via O-H···Cl hydrogen bonds to form a three dimentional framework. The 4-(dimethylamino)pyridinium cations are located in the cavities. The dimeric cations are linked via hydrogen bonds between Cl- anions and water molecules resulting in the formation of centrosymmetric R24(8) and R46(12) rings along direction [001] (Fig. 3 and Table. 1).

Related literature top

For the crystal structures of complexes involving 4-(dimethylamino)pyridinium, see: Chao et al. (1977); Mayr-Stein & Bolte (2000); Lo & Ng (2008, 2009); Koon et al. (2009); Benslimane et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-(Dimethylamino)pyridine (1 mmol, 0.08g for) and hydrochloric acid (1M) was added slowly to an aqueous solution of NdCl3.6H2O (1mmol, 0.08g). The mixture was refluxed at 353 K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of colourless plate-like crystals of the title compound.

Refinement top

The 4-(dimethylamino)pyridinium cation (B) was found to be disordered about an inversion center. The disorder was treated using the PART -1 instruction in SHELXL97 (Sheldrick, 2008.) Restraints using the SAME instruction were applied to maintain a reasonable geometry. The ADP's were also restrained to have similar values. The occupancy factors were fixed at 0.5. The H-atoms of the coordinated water molecules were located in difference Fourier syntheses and were initially refined using distance restraints (O-H = 0.85 (2) Å, and H···H = 1.40 (2) Å, with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were constrained to ride on their parent O atoms. The N-bound and C-bound H atoms were included in calculated positions and refined using a riding model: N-H = 0.88 Å, C-H = 0.95 (aromatic), 0.98 (methyl) Å, with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. O-H···Cl and N-H···Cl hydrogen bonds are shown as double dashed lines [symmetry code: (i) -x+1, -y+1, -z]. The 4-(dimethylamino)pyridinium cations consists of ordered (A) and disordered (B) entities. The organic entity (B) is disordered about an inversion center.
[Figure 2] Fig. 2. A view along the b axis of the hydrogen-bonded network of the title compound, showing the formation of ring motifs via O-H···Cl and N-H···Cl hydrogen-bonds (dashed lines) [symmetry codes: (i) -x+1, -y+1, 1-z); (ii) -x, -y+1, -z+1; (iii) -x+2,-y+1, -z].
[Figure 3] Fig. 3. A view along the a axis of the hydrogen-bonded network of the title compound, showing the formation of ring motifs via O-H···Cl hydrogen-bonds (dashed lines) [symmetry codes: (i) x, y+1, z); (ii) -x+1, -y+1, -z+1].
Tris[4-(dimethylamino)pyridinium][(bis-µ-dichlorido)-decaaquadichloridodineodymium(III)] pentachloride dihydrate top
Crystal data top
(C7H11N2)3[Nd2Cl4(H2O)10]Cl5·2H2OZ = 1
Mr = 1193.26F(000) = 594
Triclinic, P1Dx = 1.778 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5172 (4) ÅCell parameters from 15563 reflections
b = 10.7739 (5) Åθ = 3.0–28.5°
c = 11.9976 (5) ŵ = 2.90 mm1
α = 74.855 (4)°T = 180 K
β = 69.780 (4)°Platelet, colourless
γ = 85.075 (4)°0.36 × 0.22 × 0.16 mm
V = 1114.28 (8) Å3
Data collection top
Agilent Xcalibur Sapphire1
diffractometer
4551 independent reflections
Radiation source: fine-focus sealed tube4088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.475, Tmax = 0.633l = 1414
23060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0222P)2 + 2.5244P]
where P = (Fo2 + 2Fc2)/3
4551 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 1.76 e Å3
Crystal data top
(C7H11N2)3[Nd2Cl4(H2O)10]Cl5·2H2Oγ = 85.075 (4)°
Mr = 1193.26V = 1114.28 (8) Å3
Triclinic, P1Z = 1
a = 9.5172 (4) ÅMo Kα radiation
b = 10.7739 (5) ŵ = 2.90 mm1
c = 11.9976 (5) ÅT = 180 K
α = 74.855 (4)°0.36 × 0.22 × 0.16 mm
β = 69.780 (4)°
Data collection top
Agilent Xcalibur Sapphire1
diffractometer
4551 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4088 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.633Rint = 0.034
23060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.11Δρmax = 0.95 e Å3
4551 reflectionsΔρmin = 1.76 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.48488 (2)0.51184 (2)0.18894 (2)0.0276 (1)
Cl10.49345 (10)0.66402 (8)0.04455 (7)0.0285 (3)
Cl110.79337 (11)0.51474 (10)0.06963 (10)0.0421 (3)
O110.2356 (3)0.4935 (3)0.1820 (3)0.0523 (10)
O120.4711 (4)0.7381 (3)0.1875 (3)0.0550 (12)
O130.2865 (6)0.5264 (5)0.3836 (3)0.111 (2)
O140.5955 (5)0.5337 (3)0.3421 (3)0.0655 (13)
O150.4930 (4)0.2980 (3)0.3127 (2)0.0432 (9)
N310.00665 (19)0.11195 (8)1.07329 (14)0.0521 (19)0.500
N320.0280 (4)0.25416 (14)0.8530 (3)0.0521 (19)0.500
C310.000000.000001.000000.0413 (12)
C320.14423 (11)0.0583 (2)0.9163 (3)0.0413 (12)0.500
C330.1501 (3)0.1728 (2)0.8432 (3)0.0413 (12)0.500
C340.1136 (3)0.20203 (19)0.9333 (4)0.0413 (12)0.500
C350.12188 (16)0.08640 (17)1.0072 (3)0.0413 (12)0.500
C360.1501 (3)0.1736 (2)1.1571 (3)0.098 (5)0.500
C370.1136 (3)0.20276 (19)1.0670 (4)0.098 (5)0.500
N110.9754 (4)0.0990 (4)0.3994 (4)0.0544 (14)
N121.0009 (6)0.2582 (4)0.1682 (4)0.0614 (18)
C110.9844 (4)0.0171 (4)0.3236 (4)0.0362 (12)
C121.1192 (5)0.0674 (5)0.2318 (4)0.0488 (16)
C131.1231 (6)0.1873 (5)0.1574 (4)0.0572 (17)
C140.8722 (7)0.2147 (5)0.2527 (6)0.068 (2)
C150.8601 (5)0.0985 (5)0.3294 (5)0.0567 (17)
C160.8358 (7)0.1516 (6)0.4911 (6)0.083 (2)
C171.1055 (7)0.1817 (6)0.3913 (7)0.088 (3)
Cl30.51832 (13)0.21187 (10)0.57337 (9)0.0429 (3)
Cl40.07818 (14)0.49945 (15)0.64240 (11)0.0727 (5)
Cl60.500000.000000.000000.0420 (5)
O1W0.5008 (5)0.0727 (3)0.2546 (3)0.0672 (13)
H1110.146100.493700.230200.0790*
H1120.235000.494500.111200.0790*
H1210.483800.803900.127600.0820*
H1220.469400.760200.250900.0820*
H1310.230400.559300.341700.1670*
H1320.233000.512200.458900.1670*
H1410.556200.476100.407300.0980*
H1420.687600.516100.311400.0980*
H1510.502000.229800.288000.0650*
H1520.500600.280000.383600.0650*
H320.234300.012400.915200.0490*0.500
H32A0.037900.335100.811100.0620*0.500
H330.242400.201600.780400.0490*0.500
H340.202100.250300.933800.0490*0.500
H350.215300.059301.069100.0490*0.500
H36A0.131000.258001.204900.1460*0.500
H36B0.211500.184201.109300.1460*0.500
H36C0.203300.119501.212700.1460*0.500
H37A0.079400.280501.133400.1460*0.500
H37B0.198100.164701.075400.1460*0.500
H37C0.145300.225200.987800.1460*0.500
H121.005500.335200.118600.0740*
H12A1.207800.017300.221800.0590*
H131.215100.220700.096800.0690*
H140.786000.267500.259000.0820*
H150.765600.070300.389100.0680*
H16A0.788000.089100.539100.1240*
H16B0.855500.231000.545600.1240*
H16C0.769200.170300.450800.1240*
H17A1.141300.202700.311400.1320*
H17B1.077900.261100.456600.1320*
H17C1.184900.137200.400400.1320*
H11W0.494500.003000.300500.1000*
H12W0.503200.068300.184300.1000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0410 (1)0.0217 (1)0.0170 (1)0.0017 (1)0.0077 (1)0.0030 (1)
Cl10.0433 (5)0.0198 (4)0.0207 (4)0.0021 (3)0.0107 (3)0.0029 (3)
Cl110.0362 (5)0.0397 (5)0.0472 (6)0.0027 (4)0.0187 (4)0.0017 (4)
O110.0269 (15)0.070 (2)0.0489 (18)0.0026 (14)0.0025 (13)0.0175 (16)
O120.114 (3)0.0252 (14)0.0345 (16)0.0054 (16)0.0362 (18)0.0082 (12)
O130.150 (5)0.107 (4)0.0282 (19)0.053 (3)0.013 (2)0.011 (2)
O140.118 (3)0.0475 (19)0.0464 (19)0.008 (2)0.049 (2)0.0110 (15)
O150.075 (2)0.0263 (14)0.0281 (14)0.0017 (14)0.0222 (14)0.0009 (11)
N310.061 (4)0.033 (3)0.056 (3)0.002 (3)0.021 (3)0.002 (2)
N320.061 (4)0.033 (3)0.056 (3)0.002 (3)0.021 (3)0.002 (2)
C310.031 (2)0.041 (2)0.047 (2)0.0040 (17)0.0102 (17)0.0080 (18)
C320.031 (2)0.041 (2)0.047 (2)0.0040 (17)0.0102 (17)0.0080 (18)
C330.031 (2)0.041 (2)0.047 (2)0.0040 (17)0.0102 (17)0.0080 (18)
C340.031 (2)0.041 (2)0.047 (2)0.0040 (17)0.0102 (17)0.0080 (18)
C350.031 (2)0.041 (2)0.047 (2)0.0040 (17)0.0102 (17)0.0080 (18)
C360.091 (8)0.081 (8)0.096 (9)0.004 (6)0.028 (7)0.014 (7)
C370.091 (8)0.081 (8)0.096 (9)0.004 (6)0.028 (7)0.014 (7)
N110.050 (2)0.044 (2)0.060 (3)0.0031 (18)0.0208 (19)0.0069 (19)
N120.093 (4)0.035 (2)0.064 (3)0.006 (2)0.042 (3)0.0022 (19)
C110.035 (2)0.033 (2)0.037 (2)0.0004 (16)0.0106 (17)0.0046 (17)
C120.034 (2)0.054 (3)0.051 (3)0.001 (2)0.008 (2)0.009 (2)
C130.061 (3)0.060 (3)0.043 (3)0.027 (3)0.009 (2)0.003 (2)
C140.073 (4)0.048 (3)0.080 (4)0.024 (3)0.030 (3)0.013 (3)
C150.041 (3)0.056 (3)0.060 (3)0.012 (2)0.009 (2)0.007 (2)
C160.074 (4)0.084 (4)0.066 (4)0.033 (3)0.018 (3)0.024 (3)
C170.081 (4)0.056 (4)0.117 (6)0.021 (3)0.047 (4)0.008 (4)
Cl30.0650 (7)0.0375 (5)0.0298 (5)0.0030 (5)0.0210 (5)0.0083 (4)
Cl40.0507 (7)0.0898 (10)0.0383 (6)0.0214 (7)0.0100 (5)0.0094 (6)
Cl60.0588 (9)0.0270 (7)0.0404 (8)0.0014 (6)0.0198 (7)0.0040 (6)
O1W0.128 (3)0.0297 (16)0.050 (2)0.0021 (19)0.042 (2)0.0041 (14)
Geometric parameters (Å, º) top
Nd1—Cl12.8298 (8)N12—H120.8800
Nd1—Cl112.7852 (11)C31—C35ii1.417 (2)
Nd1—O112.429 (3)C31—C32ii1.467 (2)
Nd1—O122.426 (3)C31—C351.417 (2)
Nd1—O132.477 (4)C31—C321.467 (2)
Nd1—O142.479 (4)C32—C331.306 (4)
Nd1—O152.404 (3)C34—C351.318 (4)
Nd1—Cl1i2.8345 (9)C32—H320.9500
O11—H1110.8500C33—H330.9500
O11—H1120.8500C34—H340.9500
O12—H1210.8500C35—H350.9500
O12—H1220.8500C36—H36B0.9800
O13—H1310.8500C36—H36C0.9800
O13—H1320.8500C36—H36A0.9800
O14—H1410.8500C37—H37A0.9800
O14—H1420.8500C37—H37B0.9800
O15—H1510.8500C37—H37C0.9800
O15—H1520.8500C11—C151.404 (7)
N31—C311.2855 (12)C11—C121.408 (6)
N31—C361.474 (4)C12—C131.360 (7)
N31—C371.435 (3)C14—C151.333 (8)
N32—C331.385 (4)C12—H12A0.9500
N32—C341.418 (5)C13—H130.9500
O1W—H12W0.8500C14—H140.9500
O1W—H11W0.8500C15—H150.9500
N32—H32A0.8800C16—H16B0.9800
N11—C111.330 (6)C16—H16C0.9800
N11—C171.452 (8)C16—H16A0.9800
N11—C161.446 (8)C17—H17C0.9800
N12—C131.322 (8)C17—H17A0.9800
N12—C141.319 (9)C17—H17B0.9800
Cl1—Nd1—Cl1181.28 (3)C32—C31—C35ii66.36 (14)
Cl1—Nd1—O1174.96 (8)C32—C31—C32ii180.00
Cl1—Nd1—O1269.82 (8)C35—C31—C35ii180.00
Cl1—Nd1—O13124.05 (12)C32ii—C31—C35ii113.64 (14)
Cl1—Nd1—O14134.06 (8)N31ii—C31—C3258.94 (12)
Cl1—Nd1—O15146.10 (7)N31—C31—C35ii55.70 (14)
Cl1—Nd1—Cl1i74.27 (2)C32ii—C31—C3566.36 (14)
Cl11—Nd1—O11148.14 (8)C32—C31—C35113.64 (14)
Cl11—Nd1—O1294.54 (9)N31ii—C31—C35ii124.30 (14)
Cl11—Nd1—O13144.01 (13)N31ii—C31—C32ii121.06 (12)
Cl11—Nd1—O1474.88 (10)C31—C32—C33120.66 (19)
Cl11—Nd1—O1591.79 (9)N32—C33—C32123.0 (3)
Cl1i—Nd1—Cl1179.91 (3)N32—C34—C35119.7 (3)
O11—Nd1—O1296.80 (12)C31—C35—C34124.0 (3)
O11—Nd1—O1367.84 (15)C33—C32—H32120.00
O11—Nd1—O14136.94 (12)C31—C32—H32120.00
O11—Nd1—O1596.19 (12)C32—C33—H33119.00
Cl1i—Nd1—O1173.49 (8)N32—C33—H33118.00
O12—Nd1—O1374.71 (15)N32—C34—H34120.00
O12—Nd1—O1473.57 (12)C35—C34—H34120.00
O12—Nd1—O15144.06 (10)C31—C35—H35118.00
Cl1i—Nd1—O12144.08 (8)C34—C35—H35118.00
O13—Nd1—O1469.15 (16)H36A—C36—H36B109.00
O13—Nd1—O1579.52 (14)H36A—C36—H36C109.00
Cl1i—Nd1—O13128.31 (13)N31—C36—H36C109.00
O14—Nd1—O1574.08 (11)N31—C36—H36A110.00
Cl1i—Nd1—O14136.47 (9)H36B—C36—H36C109.00
Cl1i—Nd1—O1571.85 (7)N31—C36—H36B109.00
Nd1—Cl1—Nd1i105.74 (3)H37B—C37—H37C109.00
Nd1—O11—H111137.00H37A—C37—H37C109.00
Nd1—O11—H112113.00N31—C37—H37B110.00
H111—O11—H112109.00N31—C37—H37A109.00
Nd1—O12—H121130.00H37A—C37—H37B110.00
Nd1—O12—H122119.00N31—C37—H37C109.00
H121—O12—H122110.00C12—C11—C15115.1 (4)
Nd1—O13—H13188.00N11—C11—C15122.4 (4)
Nd1—O13—H132163.00N11—C11—C12122.5 (4)
H131—O13—H132108.00C11—C12—C13120.3 (5)
Nd1—O14—H141107.00N12—C13—C12121.1 (5)
Nd1—O14—H142104.00N12—C14—C15121.7 (6)
H141—O14—H142109.00C11—C15—C14121.2 (5)
Nd1—O15—H151125.00C11—C12—H12A120.00
Nd1—O15—H152125.00C13—C12—H12A120.00
H151—O15—H152109.00C12—C13—H13119.00
C31—N31—C36122.21 (17)N12—C13—H13119.00
C31—N31—C37125.7 (2)N12—C14—H14119.00
C36—N31—C37110.75 (19)C15—C14—H14119.00
C33—N32—C34117.4 (2)C14—C15—H15119.00
H11W—O1W—H12W109.00C11—C15—H15119.00
C34—N32—H32A121.00N11—C16—H16A109.00
C33—N32—H32A121.00N11—C16—H16B109.00
C11—N11—C16122.2 (4)H16A—C16—H16B109.00
C11—N11—C17121.4 (5)H16A—C16—H16C109.00
C16—N11—C17116.4 (5)N11—C16—H16C109.00
C13—N12—C14120.6 (5)H16B—C16—H16C109.00
C13—N12—H12120.00N11—C17—H17B109.00
C14—N12—H12120.00N11—C17—H17C109.00
N31—C31—C35124.30 (14)N11—C17—H17A109.00
N31—C31—C32121.06 (12)H17A—C17—H17C109.00
N31—C31—N31ii180.00H17B—C17—H17C110.00
N31ii—C31—C3555.70 (14)H17A—C17—H17B109.00
N31—C31—C32ii58.94 (12)
Cl11—Nd1—Cl1—Nd1i81.90 (4)C33—N32—C34—C359.3 (5)
O11—Nd1—Cl1—Nd1i76.70 (9)C16—N11—C11—C12178.2 (5)
O12—Nd1—Cl1—Nd1i179.96 (10)C16—N11—C11—C151.9 (7)
O13—Nd1—Cl1—Nd1i125.94 (16)C17—N11—C11—C120.3 (7)
O14—Nd1—Cl1—Nd1i140.86 (13)C17—N11—C11—C15179.8 (5)
O15—Nd1—Cl1—Nd1i1.78 (17)C14—N12—C13—C120.8 (8)
Cl1i—Nd1—Cl1—Nd1i0.00 (4)C13—N12—C14—C150.3 (9)
Cl1—Nd1—Cl1i—Nd1i0.00 (3)N31ii—C31—C32—C330.9 (2)
Cl11—Nd1—Cl1i—Nd1i83.69 (4)C35—C31—C32—C3310.1 (3)
O11—Nd1—Cl1i—Nd1i78.59 (9)N31—C31—C32—C33179.1 (2)
O12—Nd1—Cl1i—Nd1i0.06 (16)C32—C31—C35—C3410.0 (3)
O13—Nd1—Cl1i—Nd1i121.24 (15)C35ii—C31—C32—C33169.9 (3)
O14—Nd1—Cl1i—Nd1i138.80 (13)N31—C31—C35—C34178.6 (2)
O15—Nd1—Cl1i—Nd1i178.95 (10)N31ii—C31—C35—C341.4 (2)
C36—N31—C31—C32179.1 (2)C32ii—C31—C35—C34170.0 (3)
C36—N31—C31—C3513.0 (2)C31—C32—C33—N3211.0 (4)
C36—N31—C31—C32ii0.88 (19)N32—C34—C35—C3110.1 (5)
C36—N31—C31—C35ii167.0 (2)N11—C11—C12—C13179.2 (5)
C37—N31—C31—C3213.5 (3)C15—C11—C12—C130.7 (7)
C37—N31—C31—C35178.6 (2)N11—C11—C15—C14179.7 (5)
C37—N31—C31—C32ii166.5 (3)C12—C11—C15—C140.3 (8)
C37—N31—C31—C35ii1.4 (2)C11—C12—C13—N121.0 (8)
C34—N32—C33—C3210.2 (5)N12—C14—C15—C110.1 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···Cl4iii0.852.163.010 (3)177
O11—H112···Cl11i0.852.303.149 (4)173
O12—H121···Cl6iv0.852.243.080 (3)168
O12—H122···Cl3v0.852.253.089 (3)171
O13—H131···O110.852.192.738 (6)122
O13—H131···Cl4iii0.852.993.631 (6)134
O13—H132···Cl40.852.163.005 (4)172
O14—H142···Cl4v0.852.463.159 (4)140
O14—H142···Cl110.852.733.210 (4)118
O15—H151···O1W0.851.842.683 (4)172
O15—H152···Cl30.852.263.109 (3)175
N12—H12···Cl11vi0.882.653.358 (5)138
N12—H12···Cl110.882.783.451 (5)134
O1W—H11W···Cl3vii0.852.353.197 (3)179
O1W—H12W···Cl60.852.523.349 (3)167
N32—H32A···Cl40.882.263.0808 (16)156
C34—H34···Cl1iii0.952.823.703 (3)155
Symmetry codes: (i) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z; (vii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C7H11N2)3[Nd2Cl4(H2O)10]Cl5·2H2O
Mr1193.26
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.5172 (4), 10.7739 (5), 11.9976 (5)
α, β, γ (°)74.855 (4), 69.780 (4), 85.075 (4)
V3)1114.28 (8)
Z1
Radiation typeMo Kα
µ (mm1)2.90
Crystal size (mm)0.36 × 0.22 × 0.16
Data collection
DiffractometerAgilent Xcalibur Sapphire1
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.475, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
23060, 4551, 4088
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.11
No. of reflections4551
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 1.76

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···Cl4i0.852.163.010 (3)177
O11—H112···Cl11ii0.852.303.149 (4)173
O12—H121···Cl6iii0.852.243.080 (3)168
O12—H122···Cl3iv0.852.253.089 (3)171
O13—H131···O110.852.192.738 (6)122
O13—H131···Cl4i0.852.993.631 (6)134
O13—H132···Cl40.852.163.005 (4)172
O14—H142···Cl4iv0.852.463.159 (4)140
O14—H142···Cl110.852.733.210 (4)118
O15—H151···O1W0.851.842.683 (4)172
O15—H152···Cl30.852.263.109 (3)175
N12—H12···Cl11v0.882.653.358 (5)138
N12—H12···Cl110.882.783.451 (5)134
O1W—H11W···Cl3vi0.852.353.197 (3)179
O1W—H12W···Cl60.852.523.349 (3)167
N32—H32A···Cl40.882.263.0808 (16)156
C34—H34···Cl1i0.952.823.703 (3)155
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z; (vi) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge technical support (X-ray measurements) by the Laboratory of Coordination Chemistry, UPR-CNRS 8241,Toulouse.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBenslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012). Acta Cryst. E68, m1321–m1322.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m13.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19–e20.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1342-m1343
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds