Download citation
Download citation
link to html
In the steroid skeleton of the title compound, C19H28O4·2H2O, ring A assumes a slightly twisted chair conformation, ring C adopts a regular chair conformation, ring B adopts a half-chair conformation and ring D has a somewhat twisted envelope conformation. The crystal packing exhibits an extensive three-dimensional hydrogen-bonding network, formed by inter­molecular O—H...O hydrogen bonds between the steroid and water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052336/cv2322sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052336/cv2322Isup2.hkl
Contains datablock I

CCDC reference: 667449

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.099
  • Data-to-parameter ratio = 9.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 H2 O
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2539 Count of symmetry unique reflns 2552 Completeness (_total/calc) 99.49% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C15 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 10 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Drospirenone is a new contraceptive drug with the special antimineralocorticoid and antiandrogenic properties (Muhn et al., 1995). The title compound, (I), as a key starting material for the synthesis of drospirenone, was obtained by biotransformation with Colletotrichum lini from dehydroepiandrosterone (DHEA) (Romano et al., 2006). We report here the crystal structure of (I).

In (I) (Fig. 1), ring A assumes a slightly twisty chair conformation and ring C takes a regular chair conformation. In ring B, atoms C8 and C9 deviate at 0.242 and -0.503 Å from the mean plane C5—C7/C10, respectively, thus ring B takes a half-chair conformation. Ring D has a somewhat twisty envelope conformation: atoms C13, C15, C16 and C17 are nearly coplanar and atom C14 deviates from their mean plane at 0.625 Å.

In the crystal (Fig. 2), the crystalline water molecules involved in the formation of hydrogen bonding. The intermolecular and intramolecular O—H···O hydrogen bonding are found in the crystal lattice (Table 1).

Related literature top

For related literature, see: Andrea et al. (2006); Muhn et al. (1995).

Experimental top

The title compound was obtained by biotransformation with Colletotrichum lini from dehydroepiandrosterone(DHEA) according to the literature method (Andrea et al., 2006). Dehydroepiandrosterone(DHEA) was kindly offered by Mr. Pan, Jiubang Chemistry Corp. Ltd., Shanghai, China. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from the mixture of tetrahydrofuran and H2O (9:1).

Refinement top

C-bound H atoms were placed in calculated positions (C—H 0.96–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq of the parent atom. The hydroxy H atoms were located in a difference map and refined isotropically with restaint O—H=0.84 (2) Å. The H atoms in H2O molecules were located in a difference map and refined isotropically with restaints O—H= 0.83 (2) Å. Due to the absence of any significantanomalous scatterers in the compound, 1937 Friedel pairs were merged before the final refinement.

Structure description top

Drospirenone is a new contraceptive drug with the special antimineralocorticoid and antiandrogenic properties (Muhn et al., 1995). The title compound, (I), as a key starting material for the synthesis of drospirenone, was obtained by biotransformation with Colletotrichum lini from dehydroepiandrosterone (DHEA) (Romano et al., 2006). We report here the crystal structure of (I).

In (I) (Fig. 1), ring A assumes a slightly twisty chair conformation and ring C takes a regular chair conformation. In ring B, atoms C8 and C9 deviate at 0.242 and -0.503 Å from the mean plane C5—C7/C10, respectively, thus ring B takes a half-chair conformation. Ring D has a somewhat twisty envelope conformation: atoms C13, C15, C16 and C17 are nearly coplanar and atom C14 deviates from their mean plane at 0.625 Å.

In the crystal (Fig. 2), the crystalline water molecules involved in the formation of hydrogen bonding. The intermolecular and intramolecular O—H···O hydrogen bonding are found in the crystal lattice (Table 1).

For related literature, see: Andrea et al. (2006); Muhn et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I) with the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I), viewed along the a axis, showing hydrogen bonds as dashed lines. For clarity, H atoms have been omitted except for those involved in hydrogen bonding.
3β,5α,15α-Trihydroxy-5-androsten-17-one dihydrate top
Crystal data top
C19H28O4·2H2OF(000) = 776
Mr = 356.45Dx = 1.227 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4751 reflections
a = 6.0653 (8) Åθ = 2.3–25.8°
b = 12.4906 (16) ŵ = 0.09 mm1
c = 25.472 (3) ÅT = 296 K
V = 1929.8 (4) Å3Block, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2539 independent reflections
Radiation source: fine-focus sealed tube2289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 77
Tmin = 0.975, Tmax = 0.983k = 1612
12301 measured reflectionsl = 3332
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2939P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2539 reflectionsΔρmax = 0.20 e Å3
256 parametersΔρmin = 0.21 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C19H28O4·2H2OV = 1929.8 (4) Å3
Mr = 356.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0653 (8) ŵ = 0.09 mm1
b = 12.4906 (16) ÅT = 296 K
c = 25.472 (3) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2539 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2289 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.026
12301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0377 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2539 reflectionsΔρmin = 0.21 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8995 (3)0.83766 (13)0.94606 (5)0.0479 (4)
H1X0.994 (5)0.884 (2)0.9523 (11)0.083 (11)*
O21.0556 (3)0.96442 (12)0.69625 (6)0.0464 (4)
H2X1.048 (5)0.9884 (19)0.6657 (7)0.060 (8)*
O30.8912 (4)1.01700 (14)0.59879 (6)0.0725 (6)
H3X0.904 (5)1.054 (2)0.5714 (8)0.076 (9)*
O40.7005 (4)0.68704 (14)0.53143 (6)0.0679 (5)
O50.0560 (3)0.64593 (14)0.98689 (6)0.0547 (4)
H5X0.027 (6)0.7099 (16)0.9776 (11)0.078 (9)*
H5Y0.166 (4)0.657 (2)1.0062 (10)0.076 (10)*
O61.2334 (5)0.9667 (2)0.96135 (14)0.1160 (11)
H6X1.325 (7)0.937 (4)0.9813 (17)0.174*
H6Y1.258 (8)1.0295 (17)0.9615 (16)0.129 (16)*
C10.7195 (4)0.71106 (15)0.81999 (8)0.0434 (5)
H1A0.62020.65190.81310.052*
H1B0.86540.68960.80850.052*
C20.7263 (4)0.73072 (17)0.87909 (8)0.0457 (5)
H2A0.57940.74680.89190.055*
H2B0.77910.66710.89700.055*
C30.8782 (3)0.82337 (16)0.89005 (7)0.0401 (4)
H31.02380.80740.87530.048*
C40.7891 (4)0.92309 (16)0.86418 (7)0.0437 (5)
H4A0.88810.98250.87100.052*
H4B0.64670.94050.87930.052*
C50.7647 (3)0.90839 (14)0.80534 (7)0.0353 (4)
C60.8447 (4)0.98109 (14)0.77263 (7)0.0395 (4)
H60.91461.04010.78740.047*
C70.8322 (3)0.97645 (14)0.71421 (7)0.0370 (4)
H70.77561.04510.70140.044*
C80.6798 (3)0.88707 (14)0.69432 (7)0.0338 (4)
H80.52670.91160.69700.041*
C90.7080 (3)0.78640 (13)0.72853 (7)0.0332 (4)
H90.86600.77010.72840.040*
C100.6452 (3)0.80810 (14)0.78689 (7)0.0348 (4)
C110.5923 (4)0.68699 (16)0.70619 (8)0.0505 (5)
H11A0.63570.62500.72660.061*
H11B0.43420.69570.71010.061*
C120.6449 (4)0.66589 (17)0.64823 (8)0.0512 (6)
H12A0.79970.64780.64450.061*
H12B0.55820.60580.63570.061*
C130.5931 (4)0.76454 (16)0.61572 (8)0.0415 (5)
C140.7281 (3)0.85949 (15)0.63714 (7)0.0349 (4)
H140.88190.83540.63670.042*
C150.7121 (4)0.94462 (17)0.59409 (8)0.0465 (5)
H150.57150.98300.59650.056*
C160.7217 (5)0.87818 (19)0.54340 (8)0.0547 (6)
H16A0.61310.90350.51840.066*
H16B0.86670.88310.52750.066*
C170.6729 (4)0.76470 (18)0.55922 (8)0.0470 (5)
C180.3422 (4)0.7862 (2)0.61283 (10)0.0593 (6)
H18A0.28780.80330.64720.089*
H18B0.26830.72360.59990.089*
H18C0.31490.84520.58960.089*
C190.3950 (4)0.8263 (2)0.79409 (9)0.0526 (6)
H19A0.34560.88020.77000.079*
H19B0.36620.84920.82940.079*
H19C0.31770.76060.78740.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0535 (9)0.0549 (9)0.0352 (7)0.0040 (8)0.0004 (7)0.0027 (6)
O20.0432 (8)0.0525 (8)0.0436 (7)0.0128 (7)0.0001 (7)0.0049 (7)
O30.1036 (16)0.0654 (10)0.0484 (9)0.0366 (11)0.0181 (10)0.0222 (8)
O40.0860 (14)0.0634 (10)0.0543 (9)0.0029 (11)0.0013 (10)0.0193 (8)
O50.0672 (12)0.0499 (9)0.0471 (8)0.0059 (9)0.0137 (8)0.0068 (7)
O60.0978 (19)0.0640 (14)0.186 (3)0.0229 (14)0.069 (2)0.0263 (16)
C10.0507 (12)0.0330 (9)0.0465 (10)0.0046 (9)0.0029 (10)0.0049 (8)
C20.0508 (12)0.0432 (11)0.0430 (10)0.0027 (10)0.0013 (10)0.0105 (8)
C30.0392 (10)0.0455 (10)0.0355 (9)0.0018 (9)0.0035 (8)0.0009 (8)
C40.0549 (12)0.0363 (9)0.0399 (9)0.0032 (9)0.0030 (10)0.0026 (8)
C50.0380 (10)0.0296 (8)0.0383 (8)0.0062 (8)0.0009 (8)0.0011 (7)
C60.0502 (11)0.0277 (8)0.0408 (9)0.0020 (8)0.0053 (9)0.0021 (7)
C70.0437 (10)0.0253 (8)0.0420 (9)0.0008 (8)0.0021 (8)0.0047 (7)
C80.0306 (9)0.0316 (8)0.0390 (8)0.0019 (8)0.0012 (8)0.0002 (7)
C90.0312 (9)0.0295 (8)0.0388 (9)0.0017 (7)0.0011 (7)0.0008 (7)
C100.0314 (9)0.0331 (9)0.0399 (9)0.0001 (7)0.0023 (8)0.0030 (7)
C110.0635 (15)0.0381 (10)0.0498 (11)0.0165 (11)0.0010 (11)0.0010 (9)
C120.0637 (15)0.0365 (10)0.0532 (11)0.0110 (10)0.0012 (11)0.0089 (9)
C130.0363 (10)0.0434 (10)0.0446 (10)0.0041 (9)0.0019 (9)0.0080 (8)
C140.0322 (9)0.0351 (9)0.0374 (8)0.0001 (8)0.0017 (8)0.0005 (7)
C150.0548 (13)0.0439 (11)0.0409 (10)0.0010 (10)0.0081 (10)0.0043 (8)
C160.0642 (15)0.0610 (13)0.0389 (10)0.0004 (13)0.0021 (11)0.0008 (10)
C170.0408 (11)0.0556 (12)0.0447 (10)0.0025 (10)0.0063 (9)0.0101 (9)
C180.0360 (11)0.0793 (17)0.0624 (13)0.0065 (12)0.0042 (10)0.0115 (13)
C190.0328 (10)0.0746 (15)0.0504 (12)0.0008 (11)0.0051 (9)0.0034 (11)
Geometric parameters (Å, º) top
O1—C31.443 (2)C8—C141.525 (2)
O1—H1X0.830 (18)C8—C91.539 (2)
O2—C71.438 (3)C8—H80.9800
O2—H2X0.835 (16)C9—C111.536 (3)
O3—C151.418 (3)C9—C101.558 (2)
O3—H3X0.844 (17)C9—H90.9800
O4—C171.212 (3)C10—C191.546 (3)
O5—H5X0.852 (18)C11—C121.533 (3)
O5—H5Y0.841 (18)C11—H11A0.9700
O6—H6X0.84 (2)C11—H11B0.9700
O6—H6Y0.799 (19)C12—C131.518 (3)
C1—C21.526 (3)C12—H12A0.9700
C1—C101.544 (3)C12—H12B0.9700
C1—H1A0.9700C13—C171.518 (3)
C1—H1B0.9700C13—C141.541 (3)
C2—C31.505 (3)C13—C181.547 (3)
C2—H2A0.9700C14—C151.531 (3)
C2—H2B0.9700C14—H140.9800
C3—C41.509 (3)C15—C161.536 (3)
C3—H30.9800C15—H150.9800
C4—C51.517 (3)C16—C171.503 (3)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C5—C61.324 (3)C18—H18A0.9599
C5—C101.521 (3)C18—H18B0.9599
C6—C71.491 (2)C18—H18C0.9599
C6—H60.9300C19—H19A0.9599
C7—C81.536 (3)C19—H19B0.9599
C7—H70.9800C19—H19C0.9599
C3—O1—H1X110 (2)C1—C10—C19109.70 (18)
C7—O2—H2X102 (2)C5—C10—C9108.76 (15)
C15—O3—H3X111 (2)C1—C10—C9108.25 (15)
H5X—O5—H5Y100 (3)C19—C10—C9112.24 (16)
H6X—O6—H6Y108 (5)C12—C11—C9113.61 (17)
C2—C1—C10114.86 (16)C12—C11—H11A108.8
C2—C1—H1A108.6C9—C11—H11A108.8
C10—C1—H1A108.6C12—C11—H11B108.8
C2—C1—H1B108.6C9—C11—H11B108.8
C10—C1—H1B108.6H11A—C11—H11B107.7
H1A—C1—H1B107.5C13—C12—C11110.04 (17)
C3—C2—C1108.85 (16)C13—C12—H12A109.7
C3—C2—H2A109.9C11—C12—H12A109.7
C1—C2—H2A109.9C13—C12—H12B109.7
C3—C2—H2B109.9C11—C12—H12B109.7
C1—C2—H2B109.9H12A—C12—H12B108.2
H2A—C2—H2B108.3C12—C13—C17116.87 (18)
O1—C3—C2109.45 (16)C12—C13—C14108.75 (16)
O1—C3—C4111.19 (16)C17—C13—C1499.50 (17)
C2—C3—C4109.54 (17)C12—C13—C18111.8 (2)
O1—C3—H3108.9C17—C13—C18105.57 (19)
C2—C3—H3108.9C14—C13—C18113.90 (19)
C4—C3—H3108.9C8—C14—C15121.00 (16)
C3—C4—C5111.50 (15)C8—C14—C13114.19 (16)
C3—C4—H4A109.3C15—C14—C13104.31 (15)
C5—C4—H4A109.3C8—C14—H14105.3
C3—C4—H4B109.3C15—C14—H14105.3
C5—C4—H4B109.3C13—C14—H14105.3
H4A—C4—H4B108.0O3—C15—C14109.50 (17)
C6—C5—C4120.17 (17)O3—C15—C16112.7 (2)
C6—C5—C10123.01 (17)C14—C15—C16102.98 (17)
C4—C5—C10116.82 (16)O3—C15—H15110.5
C5—C6—C7125.63 (18)C14—C15—H15110.5
C5—C6—H6117.2C16—C15—H15110.5
C7—C6—H6117.2C17—C16—C15106.06 (17)
O2—C7—C6105.89 (17)C17—C16—H16A110.5
O2—C7—C8112.73 (15)C15—C16—H16A110.5
C6—C7—C8112.84 (16)C17—C16—H16B110.5
O2—C7—H7108.4C15—C16—H16B110.5
C6—C7—H7108.4H16A—C16—H16B108.7
C8—C7—H7108.4O4—C17—C16124.8 (2)
C14—C8—C7111.32 (15)O4—C17—C13126.6 (2)
C14—C8—C9109.55 (14)C16—C17—C13108.55 (17)
C7—C8—C9109.88 (14)C13—C18—H18A109.5
C14—C8—H8108.7C13—C18—H18B109.5
C7—C8—H8108.7H18A—C18—H18B109.5
C9—C8—H8108.7C13—C18—H18C109.5
C11—C9—C8113.58 (15)H18A—C18—H18C109.5
C11—C9—C10112.49 (15)H18B—C18—H18C109.5
C8—C9—C10111.77 (14)C10—C19—H19A109.5
C11—C9—H9106.1C10—C19—H19B109.5
C8—C9—H9106.1H19A—C19—H19B109.5
C10—C9—H9106.1C10—C19—H19C109.5
C5—C10—C1109.81 (15)H19A—C19—H19C109.5
C5—C10—C19108.07 (17)H19B—C19—H19C109.5
C10—C1—C2—C357.6 (3)C11—C9—C10—C1959.7 (2)
C1—C2—C3—O1175.65 (17)C8—C9—C10—C1969.4 (2)
C1—C2—C3—C462.2 (2)C8—C9—C11—C1249.8 (3)
O1—C3—C4—C5179.56 (18)C10—C9—C11—C12178.05 (18)
C2—C3—C4—C558.5 (2)C9—C11—C12—C1354.7 (3)
C3—C4—C5—C6130.8 (2)C11—C12—C13—C17169.47 (19)
C3—C4—C5—C1049.5 (3)C11—C12—C13—C1457.9 (2)
C4—C5—C6—C7179.9 (2)C11—C12—C13—C1868.7 (2)
C10—C5—C6—C70.3 (3)C7—C8—C14—C1558.5 (2)
C5—C6—C7—O2113.7 (2)C9—C8—C14—C15179.81 (17)
C5—C6—C7—C810.1 (3)C7—C8—C14—C13175.67 (16)
O2—C7—C8—C1440.9 (2)C9—C8—C14—C1353.9 (2)
C6—C7—C8—C14160.83 (17)C12—C13—C14—C860.2 (2)
O2—C7—C8—C980.62 (19)C17—C13—C14—C8177.07 (16)
C6—C7—C8—C939.3 (2)C18—C13—C14—C865.2 (2)
C14—C8—C9—C1147.6 (2)C12—C13—C14—C15165.60 (17)
C7—C8—C9—C11170.19 (16)C17—C13—C14—C1542.9 (2)
C14—C8—C9—C10176.18 (15)C18—C13—C14—C1569.0 (2)
C7—C8—C9—C1061.2 (2)C8—C14—C15—O372.0 (2)
C6—C5—C10—C1138.4 (2)C13—C14—C15—O3157.68 (18)
C4—C5—C10—C141.8 (2)C8—C14—C15—C16167.8 (2)
C6—C5—C10—C19101.9 (2)C13—C14—C15—C1637.5 (2)
C4—C5—C10—C1977.8 (2)O3—C15—C16—C17134.6 (2)
C6—C5—C10—C920.2 (3)C14—C15—C16—C1716.7 (3)
C4—C5—C10—C9160.08 (17)C15—C16—C17—O4167.5 (2)
C2—C1—C10—C546.0 (2)C15—C16—C17—C1310.4 (3)
C2—C1—C10—C1972.6 (2)C12—C13—C17—O428.5 (3)
C2—C1—C10—C9164.65 (18)C14—C13—C17—O4145.3 (2)
C11—C9—C10—C5179.26 (16)C18—C13—C17—O496.5 (3)
C8—C9—C10—C550.1 (2)C12—C13—C17—C16149.3 (2)
C11—C9—C10—C161.5 (2)C14—C13—C17—C1632.6 (2)
C8—C9—C10—C1169.36 (16)C18—C13—C17—C1685.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···O60.83 (2)1.80 (2)2.618 (3)170 (3)
O2—H2X···O30.84 (2)1.98 (2)2.755 (2)153 (3)
O3—H3X···O5i0.84 (2)1.89 (2)2.731 (2)176 (3)
O5—H5X···O1ii0.85 (2)1.95 (2)2.778 (2)165 (3)
O5—H5Y···O1iii0.84 (2)1.87 (2)2.702 (2)172 (3)
O6—H6X···O5iv0.84 (2)1.92 (2)2.747 (3)168 (5)
O6—H6Y···O4v0.80 (2)1.99 (2)2.787 (3)174 (5)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+2; (iv) x+3/2, y+3/2, z+2; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H28O4·2H2O
Mr356.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.0653 (8), 12.4906 (16), 25.472 (3)
V3)1929.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12301, 2539, 2289
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.03
No. of reflections2539
No. of parameters256
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···O60.830 (18)1.80 (2)2.618 (3)170 (3)
O2—H2X···O30.835 (16)1.98 (2)2.755 (2)153 (3)
O3—H3X···O5i0.844 (17)1.889 (18)2.731 (2)176 (3)
O5—H5X···O1ii0.852 (18)1.95 (2)2.778 (2)165 (3)
O5—H5Y···O1iii0.841 (18)1.867 (19)2.702 (2)172 (3)
O6—H6X···O5iv0.84 (2)1.92 (2)2.747 (3)168 (5)
O6—H6Y···O4v0.799 (19)1.99 (2)2.787 (3)174 (5)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+2; (iv) x+3/2, y+3/2, z+2; (v) x+2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds