Download citation
Download citation
link to html
The crystal structure of the title compound, C7H15NO4S, was determined at 103 K. There are two mol­ecules in the asymmetric unit with different conformations of the aliphatic chains. In the solid state, the title mol­ecule is a zwitterion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027728/kp6056sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027728/kp6056Isup2.hkl
Contains datablock I

CCDC reference: 287618

Key indicators

  • Single-crystal X-ray study
  • T = 103 K
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.026
  • wR factor = 0.075
  • Data-to-parameter ratio = 18.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C7 H15 N O4 S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The introduction of sulfonic compounds as zwitterionic buffers, e.g. MES [2-(N-morpholino)ethanesulfonic acid], MOPS [3-(N-morpholino)propanesulfonic acid] and HEPES {[4-(2-hydroxyethyl)-1-piperazine]ethanesulfonic acid}, has allowed for better study of many biological processes (Good et al., 1966; Good & Izawa, 1972; Ferguson et al., 1980). The crystal structures of MES, its sodium salt (Christensen et al., 1993; Deschamps et al. 2002) and HEPES (Wouters et al., 1996) have already been reported. In this paper the crystal structure of MOPS, (I), is presented. Different conformations of the propanesulfonate moiety are illustrated by their torsion angles (Table 1).

The title compound is zwitterionic in the crystal, which is also observed in the structures of MES monohydrate and of HEPES. The N atoms are protonated, as confirmed by localization of the H atoms from the difference Fourier map. Both N atoms are proton donors in N—H···O intermolecular hydrogen bonds (Table 2). Hydrogen bonds occur only between molecules with different conformations of the aliphatic chains. There are also short contacts between O atoms of the sulfonic groups (O2A, O2B and O3A) and C atoms (C3A, C4A, C7A and C7B), with O···C distances ranging from 3.139 to 3.401 Å and O···H—C angles greater than 150°. Both morpholine rings have a chair conformation.

Experimental top

3-(N-Morpholino)propanesulfonic acid was purchased from FLUKA. The crystal of (I) for data collection was obtained at room temperature by slow evaporation of 1 M MOPS solution in Solvent?.

Computing details top

Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell refinement: HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) and HKL-2000; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and HKL-2000; molecular graphics: HKL-2000, ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and O (Jones et al., 1991); software used to prepare material for publication: HKL-2000 and SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
3-(morpholinium-1-yl)propanesulfonate top
Crystal data top
C7H15NO4SF(000) = 896
Mr = 209.26Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71074 Å
Hall symbol: -P 2ybcCell parameters from 12720 reflections
a = 6.149 (1) Åθ = 2.3–32.0°
b = 11.255 (1) ŵ = 0.33 mm1
c = 27.402 (1) ÅT = 103 K
β = 90.431 (1)°Plate, colourless
V = 1896.4 (4) Å30.10 × 0.10 × 0.02 mm
Z = 8
Data collection top
Goniostat vertical Euler
diffractometer
6578 independent reflections
Radiation source: fine-focus sealed tube5857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 10.0 pixels mm-1θmax = 32.0°, θmin = 2.3°
ω scan with χ offseth = 99
Absorption correction: multi-scan
(Otwinowski et al., 2003)
k = 1616
Tmin = 0.958, Tmax = 0.994l = 4040
12720 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.075All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.5917P]
where P = (Fo2 + 2Fc2)/3
6578 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C7H15NO4SV = 1896.4 (4) Å3
Mr = 209.26Z = 8
Monoclinic, P21/cMo Kα radiation
a = 6.149 (1) ŵ = 0.33 mm1
b = 11.255 (1) ÅT = 103 K
c = 27.402 (1) Å0.10 × 0.10 × 0.02 mm
β = 90.431 (1)°
Data collection top
Goniostat vertical Euler
diffractometer
6578 independent reflections
Absorption correction: multi-scan
(Otwinowski et al., 2003)
5857 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.994Rint = 0.012
12720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.075All H-atom parameters refined
S = 1.06Δρmax = 0.45 e Å3
6578 reflectionsΔρmin = 0.41 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.28275 (3)0.717987 (18)0.323707 (7)0.01242 (5)
N1A0.26199 (12)0.29656 (6)0.30120 (3)0.01186 (12)
H0A0.166 (2)0.3149 (13)0.3240 (5)0.021 (3)*
O1A0.44217 (11)0.07792 (6)0.33722 (2)0.01749 (12)
O2A0.24359 (11)0.77974 (6)0.27776 (2)0.01646 (12)
O3A0.51595 (11)0.71193 (6)0.33608 (2)0.01723 (12)
O4A0.15499 (12)0.76277 (6)0.36412 (3)0.02138 (14)
C1A0.19910 (14)0.56788 (7)0.31482 (3)0.01455 (15)
H1A0.219 (2)0.5306 (12)0.3454 (5)0.021 (3)*
H2A0.044 (2)0.5714 (13)0.3080 (5)0.025 (3)*
C2A0.32582 (15)0.50907 (7)0.27378 (3)0.01489 (15)
H3A0.306 (2)0.5547 (12)0.2445 (5)0.021 (3)*
H4A0.482 (2)0.5061 (11)0.2815 (5)0.017 (3)*
C3A0.24752 (15)0.38543 (7)0.26013 (3)0.01453 (14)
H5A0.096 (2)0.3853 (12)0.2497 (5)0.019 (3)*
H6A0.337 (2)0.3547 (12)0.2347 (5)0.022 (3)*
C4A0.19435 (15)0.17706 (7)0.28183 (3)0.01552 (15)
H7A0.284 (2)0.1629 (12)0.2547 (5)0.019 (3)*
H8A0.046 (2)0.1848 (12)0.2722 (5)0.017 (3)*
C5A0.22253 (15)0.08175 (8)0.32037 (4)0.01824 (16)
H9A0.186 (2)0.0038 (12)0.3062 (5)0.020 (3)*
H10A0.126 (2)0.0981 (12)0.3476 (5)0.020 (3)*
C6A0.49529 (15)0.18802 (8)0.36034 (3)0.01627 (15)
H11A0.640 (2)0.1825 (12)0.3725 (5)0.020 (3)*
H12A0.397 (2)0.2020 (12)0.3876 (5)0.019 (3)*
C7A0.48440 (14)0.29011 (8)0.32430 (3)0.01461 (15)
H13A0.510 (2)0.3633 (12)0.3401 (5)0.022 (3)*
H14A0.587 (2)0.2807 (12)0.2988 (5)0.021 (3)*
S1B0.01299 (3)0.349348 (18)0.422149 (7)0.01249 (5)
N1B0.41309 (11)0.75543 (6)0.43506 (3)0.01211 (12)
H0B0.448 (2)0.7468 (12)0.4041 (5)0.022 (3)*
O1B0.42816 (11)1.00877 (6)0.44656 (2)0.01616 (12)
O2B0.00990 (12)0.23599 (6)0.44759 (3)0.02099 (14)
O3B0.21427 (10)0.41650 (6)0.42900 (2)0.01785 (13)
O4B0.04555 (10)0.33849 (6)0.37006 (2)0.01573 (12)
C1B0.19955 (14)0.43603 (8)0.44803 (3)0.01436 (14)
H1B0.170 (2)0.4383 (12)0.4822 (5)0.020 (3)*
H2B0.332 (2)0.3943 (12)0.4427 (5)0.020 (3)*
C2B0.20932 (14)0.56177 (8)0.42706 (3)0.01557 (15)
H3B0.073 (2)0.5985 (13)0.4310 (5)0.024 (3)*
H4B0.243 (2)0.5591 (14)0.3932 (6)0.033 (4)*
C3B0.38412 (14)0.63126 (7)0.45404 (3)0.01381 (14)
H5B0.522 (2)0.5948 (12)0.4501 (5)0.017 (3)*
H6B0.354 (2)0.6381 (12)0.4886 (5)0.019 (3)*
C4B0.59290 (13)0.81659 (8)0.46206 (3)0.01424 (14)
H7B0.548 (2)0.8196 (13)0.4967 (5)0.021 (3)*
H8B0.724 (2)0.7690 (12)0.4576 (5)0.021 (3)*
C5B0.62333 (14)0.94128 (8)0.44211 (3)0.01570 (15)
H9B0.731 (2)0.9786 (12)0.4617 (5)0.019 (3)*
H10B0.673 (2)0.9373 (12)0.4081 (5)0.017 (3)*
C6B0.25831 (14)0.95341 (8)0.41978 (3)0.01586 (15)
H11B0.132 (2)1.0008 (12)0.4229 (5)0.018 (3)*
H12B0.297 (2)0.9489 (12)0.3850 (5)0.019 (3)*
C7B0.21014 (13)0.82933 (8)0.43872 (3)0.01424 (14)
H13B0.107 (2)0.7956 (12)0.4190 (5)0.017 (3)*
H14B0.164 (2)0.8293 (11)0.4723 (5)0.013 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01428 (9)0.01221 (9)0.01078 (9)0.00151 (6)0.00090 (7)0.00072 (6)
N1A0.0130 (3)0.0105 (3)0.0121 (3)0.0007 (2)0.0001 (2)0.0005 (2)
O1A0.0196 (3)0.0127 (3)0.0201 (3)0.0030 (2)0.0036 (2)0.0001 (2)
O2A0.0202 (3)0.0138 (3)0.0154 (3)0.0006 (2)0.0025 (2)0.0024 (2)
O3A0.0150 (3)0.0210 (3)0.0156 (3)0.0015 (2)0.0026 (2)0.0002 (2)
O4A0.0238 (3)0.0213 (3)0.0192 (3)0.0039 (3)0.0083 (3)0.0069 (3)
C1A0.0185 (4)0.0119 (3)0.0132 (4)0.0019 (3)0.0023 (3)0.0007 (3)
C2A0.0186 (4)0.0120 (3)0.0142 (4)0.0003 (3)0.0028 (3)0.0012 (3)
C3A0.0197 (4)0.0120 (3)0.0118 (3)0.0009 (3)0.0003 (3)0.0013 (3)
C4A0.0181 (4)0.0111 (3)0.0173 (4)0.0001 (3)0.0034 (3)0.0018 (3)
C5A0.0204 (4)0.0124 (3)0.0219 (4)0.0016 (3)0.0040 (3)0.0018 (3)
C6A0.0181 (4)0.0148 (3)0.0159 (4)0.0010 (3)0.0027 (3)0.0010 (3)
C7A0.0132 (3)0.0142 (3)0.0164 (4)0.0001 (3)0.0017 (3)0.0008 (3)
S1B0.01312 (9)0.01215 (9)0.01219 (9)0.00111 (6)0.00092 (6)0.00083 (6)
N1B0.0124 (3)0.0134 (3)0.0104 (3)0.0015 (2)0.0006 (2)0.0006 (2)
O1B0.0169 (3)0.0140 (3)0.0175 (3)0.0009 (2)0.0006 (2)0.0025 (2)
O2B0.0266 (3)0.0149 (3)0.0216 (3)0.0044 (2)0.0039 (3)0.0059 (2)
O3B0.0134 (3)0.0208 (3)0.0193 (3)0.0009 (2)0.0016 (2)0.0010 (2)
O4B0.0151 (3)0.0197 (3)0.0125 (3)0.0003 (2)0.0008 (2)0.0020 (2)
C1B0.0156 (3)0.0137 (3)0.0137 (4)0.0013 (3)0.0032 (3)0.0008 (3)
C2B0.0170 (4)0.0141 (3)0.0156 (4)0.0030 (3)0.0043 (3)0.0022 (3)
C3B0.0152 (3)0.0127 (3)0.0136 (4)0.0017 (3)0.0023 (3)0.0009 (3)
C4B0.0127 (3)0.0154 (3)0.0146 (4)0.0023 (3)0.0025 (3)0.0013 (3)
C5B0.0150 (3)0.0149 (3)0.0172 (4)0.0027 (3)0.0006 (3)0.0016 (3)
C6B0.0163 (3)0.0148 (3)0.0165 (4)0.0008 (3)0.0019 (3)0.0012 (3)
C7B0.0119 (3)0.0157 (3)0.0151 (4)0.0002 (3)0.0004 (3)0.0003 (3)
Geometric parameters (Å, º) top
S1A—O4A1.4529 (7)S1B—O2B1.4540 (7)
S1A—O2A1.4567 (7)S1B—O3B1.4610 (7)
S1A—O3A1.4726 (7)S1B—O4B1.4744 (7)
S1A—C1A1.7822 (9)S1B—C1B1.7823 (9)
N1A—C4A1.5034 (11)N1B—C3B1.5014 (11)
N1A—C7A1.5044 (11)N1B—C4B1.5020 (11)
N1A—C3A1.5078 (11)N1B—C7B1.5025 (11)
N1A—H0A0.889 (14)N1B—H0B0.879 (14)
O1A—C5A1.4246 (11)O1B—C6B1.4244 (11)
O1A—C6A1.4284 (11)O1B—C5B1.4248 (11)
C1A—C2A1.5240 (12)C1B—C2B1.5284 (12)
C1A—H1A0.945 (13)C1B—H1B0.952 (13)
C1A—H2A0.969 (14)C1B—H2B0.948 (14)
C2A—C3A1.5185 (12)C2B—C3B1.5249 (12)
C2A—H3A0.959 (14)C2B—H3B0.941 (14)
C2A—H4A0.982 (13)C2B—H4B0.950 (16)
C3A—H5A0.972 (13)C3B—H5B0.947 (13)
C3A—H6A0.956 (14)C3B—H6B0.967 (13)
C4A—C5A1.5143 (13)C4B—C5B1.5171 (12)
C4A—H7A0.942 (14)C4B—H7B0.988 (13)
C4A—H8A0.951 (13)C4B—H8B0.973 (14)
C5A—H9A0.984 (14)C5B—H9B0.953 (13)
C5A—H10A0.974 (14)C5B—H10B0.980 (13)
C6A—C7A1.5162 (12)C6B—C7B1.5182 (12)
C6A—H11A0.949 (14)C6B—H11B0.947 (14)
C6A—H12A0.977 (13)C6B—H12B0.982 (13)
C7A—H13A0.944 (14)C7B—H13B0.919 (13)
C7A—H14A0.952 (14)C7B—H14B0.960 (12)
O4A—S1A—O2A113.99 (4)O2B—S1B—O3B113.98 (4)
O4A—S1A—O3A111.82 (4)O2B—S1B—O4B112.79 (4)
O2A—S1A—O3A112.05 (4)O3B—S1B—O4B111.57 (4)
O4A—S1A—C1A106.02 (4)O2B—S1B—C1B106.10 (4)
O2A—S1A—C1A106.77 (4)O3B—S1B—C1B106.78 (4)
O3A—S1A—C1A105.49 (4)O4B—S1B—C1B104.84 (4)
C4A—N1A—C7A110.70 (6)C3B—N1B—C4B109.99 (6)
C4A—N1A—C3A108.38 (7)C3B—N1B—C7B113.32 (6)
C7A—N1A—C3A113.23 (7)C4B—N1B—C7B109.12 (7)
C4A—N1A—H0A105.8 (9)C3B—N1B—H0B105.0 (9)
C7A—N1A—H0A108.9 (9)C4B—N1B—H0B110.7 (9)
C3A—N1A—H0A109.5 (9)C7B—N1B—H0B108.6 (9)
C5A—O1A—C6A109.30 (7)C6B—O1B—C5B110.06 (7)
C2A—C1A—S1A111.34 (6)C2B—C1B—S1B112.59 (6)
C2A—C1A—H1A113.6 (8)C2B—C1B—H1B110.6 (8)
S1A—C1A—H1A105.3 (8)S1B—C1B—H1B105.8 (8)
C2A—C1A—H2A112.5 (8)C2B—C1B—H2B111.7 (8)
S1A—C1A—H2A105.6 (9)S1B—C1B—H2B107.3 (8)
H1A—C1A—H2A107.9 (12)H1B—C1B—H2B108.5 (11)
C3A—C2A—C1A114.64 (7)C3B—C2B—C1B108.57 (7)
C3A—C2A—H3A104.3 (8)C3B—C2B—H3B110.5 (9)
C1A—C2A—H3A108.8 (8)C1B—C2B—H3B109.4 (9)
C3A—C2A—H4A109.3 (8)C3B—C2B—H4B110.1 (10)
C1A—C2A—H4A111.0 (8)C1B—C2B—H4B110.2 (10)
H3A—C2A—H4A108.4 (11)H3B—C2B—H4B108.1 (13)
N1A—C3A—C2A114.03 (7)N1B—C3B—C2B113.06 (7)
N1A—C3A—H5A105.6 (8)N1B—C3B—H5B105.1 (8)
C2A—C3A—H5A112.0 (8)C2B—C3B—H5B110.8 (8)
N1A—C3A—H6A105.9 (8)N1B—C3B—H6B106.7 (8)
C2A—C3A—H6A109.2 (8)C2B—C3B—H6B112.7 (8)
H5A—C3A—H6A109.8 (11)H5B—C3B—H6B108.1 (11)
N1A—C4A—C5A110.96 (7)N1B—C4B—C5B109.62 (7)
N1A—C4A—H7A105.6 (8)N1B—C4B—H7B106.8 (8)
C5A—C4A—H7A111.4 (8)C5B—C4B—H7B110.3 (8)
N1A—C4A—H8A106.1 (8)N1B—C4B—H8B107.2 (8)
C5A—C4A—H8A111.2 (8)C5B—C4B—H8B111.4 (8)
H7A—C4A—H8A111.3 (11)H7B—C4B—H8B111.3 (11)
O1A—C5A—C4A110.53 (7)O1B—C5B—C4B111.15 (7)
O1A—C5A—H9A108.2 (8)O1B—C5B—H9B107.8 (8)
C4A—C5A—H9A109.4 (8)C4B—C5B—H9B106.8 (8)
O1A—C5A—H10A109.9 (8)O1B—C5B—H10B111.2 (8)
C4A—C5A—H10A109.4 (8)C4B—C5B—H10B109.7 (8)
H9A—C5A—H10A109.4 (11)H9B—C5B—H10B110.0 (11)
O1A—C6A—C7A111.09 (7)O1B—C6B—C7B111.60 (7)
O1A—C6A—H11A108.1 (8)O1B—C6B—H11B108.2 (8)
C7A—C6A—H11A108.4 (9)C7B—C6B—H11B109.3 (8)
O1A—C6A—H12A109.7 (8)O1B—C6B—H12B110.3 (8)
C7A—C6A—H12A110.5 (8)C7B—C6B—H12B109.3 (8)
H11A—C6A—H12A108.9 (11)H11B—C6B—H12B108.1 (11)
N1A—C7A—C6A110.25 (7)N1B—C7B—C6B109.06 (7)
N1A—C7A—H13A107.5 (8)N1B—C7B—H13B108.1 (8)
C6A—C7A—H13A110.8 (8)C6B—C7B—H13B108.2 (8)
N1A—C7A—H14A107.6 (8)N1B—C7B—H14B107.6 (8)
C6A—C7A—H14A111.6 (8)C6B—C7B—H14B112.5 (8)
H13A—C7A—H14A109.0 (12)H13B—C7B—H14B111.2 (11)
N1B—C3B—C2B—C1B177.97 (7)C3A—C2A—C1A—S1A173.62 (6)
N1A—C3A—C2A—C1A60.82 (10)C4A—N1A—C3A—C2A176.19 (7)
C3B—C2B—C1B—S1B175.84 (6)C4B—N1B—C3B—C2B177.91 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H0A···O4B0.889 (14)1.837 (14)2.7227 (10)174.4 (14)
N1B—H0B···O3Ai0.879 (14)1.915 (14)2.7871 (10)171.1 (13)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H15NO4S
Mr209.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)103
a, b, c (Å)6.149 (1), 11.255 (1), 27.402 (1)
β (°) 90.431 (1)
V3)1896.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.10 × 0.10 × 0.02
Data collection
DiffractometerGoniostat vertical Euler
diffractometer
Absorption correctionMulti-scan
(Otwinowski et al., 2003)
Tmin, Tmax0.958, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
12720, 6578, 5857
Rint0.012
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.075, 1.06
No. of reflections6578
No. of parameters355
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.41

Computer programs: HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990) and HKL-2000, SHELXL97 (Sheldrick, 1997) and HKL-2000, HKL-2000, ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and O (Jones et al., 1991), HKL-2000 and SHELXL97.

Selected torsion angles (º) top
N1B—C3B—C2B—C1B177.97 (7)C3A—C2A—C1A—S1A173.62 (6)
N1A—C3A—C2A—C1A60.82 (10)C4A—N1A—C3A—C2A176.19 (7)
C3B—C2B—C1B—S1B175.84 (6)C4B—N1B—C3B—C2B177.91 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H0A···O4B0.889 (14)1.837 (14)2.7227 (10)174.4 (14)
N1B—H0B···O3Ai0.879 (14)1.915 (14)2.7871 (10)171.1 (13)
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds