Download citation
Download citation
link to html
The title complex, [Ba2Ni(C3H2O4)2(NO3)2(H2O)10]n, has a two-dimensional layer structure. The Ni atom lies on a crystallographic centre of symmetry in an octa­hedral NiO6 environment, and is coordinated by four malonate O atoms in a planar arrangement and by two water mol­ecules in axial positions. The coordination of the unique Ba atom involves two nitrate O atoms, five water mol­ecules and three malonate O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106029866/av3027sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106029866/av3027Isup2.hkl
Contains datablock I

CCDC reference: 621267

Comment top

There has been considerable interest in the design and synthesis of coordination polymers based on assemblies of transition metal ions and α,ω-dicarboxylate ligands, because carboxylates can give rise to different coordination modes with metal ions in the construction of coordination polymers with specific architectures (Rodriguez-Martin et al., 2002), and there is increaseing recognition of the role of metals in biological systems (Maji et al., 2003). The malonate ligand, with two neighbouring carboxylate groups, is very flexible. Its basic coordination mode is as a chelate via two distal carboxylate O atoms to form a six-membered ring, and the coordinating ability of the nonchelating O atoms makes the formation of polymeric networks possible (Djeghri et al., 2005). With its versatile coordinating ability as a monodentate, chelated bidentate or bridging ligand, malonate can create various patterns (Delgado et al., 2004; Gil de Muro et al., 2000; Djeghri et al., 2006; Wang et al., 2004). Our interest in heterobimetallic malonate complexes involving transition and alkaline-earth metals stems from their potential application in molecular-based magnetism, catalysis, supramolecular chemistry and materials science (Gil de Muro et al., 1998, 2004). We have recently reported the crystal structure of poly[tetraaquo-di-µ4-malonato-barium(II)zinc(II)] (Guo & Guo, 2006). Interestingly, when nickel chloride was used, we expected a structure similar to or isotypic with that of the zinc compound. Instead, a completely different crystal structure was obtained. Here, we report the structure of the title bimetallic malonate complex, (I).

The asymmetric unit in the structure of (I) comprises half an Ni atom, one Ba atom, one nitrate anion, one complete malonate dianion and five nonequivalent water molecules, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination geometry of the Ba and Ni atoms. Selected geometric parameters are given in Table 1.

The Ni atom, lying on a crystallographic centre of symmetry, is octahedrally coordinated, with atoms O1 and O3 of two malonate anions in a planar arrangement [Ni—O 2.047 (2) and 2.021 (2) Å] and two O8 atoms [Ni—O 2.098 (2) Å] from two water molecules forming the opposing apices of the octahedron. The Ni—Owater bonds are slightly longer, and the Ni—Omalonate bonds are somewhat shorter, than those in the [CaNi(mal)2(H2O)4]·2H2O complex (Gil de Muro et al., 2000). All the cis O—Ni—O bond angles are close to 90° [in the range 86.77 (10)–93.23 (10)°] and, because of the site symmetry of Ni, all the trans angles are exactly 180°. Thus, the coordination octahedra of the Ni atoms can be visualized as having a slightly elongated axial distortion.

In the present structure, the variability of the malonate ligand can be clearly seen (Fig. 1). Monodentate, bidentate-chelating, chelated six-membered and bridging bonding modes are all present. Atom O1 of the carboxylate group O1/C1/O2 adopts a monodentate mode. Atoms O3 and O4 of the carboxylate group O3/C3/O4 have both a bidentate 1,2-chelating mode to connect with the Ba atom and a bridging bonding mode, atom O3 being coordinated to one Ni atom and one Ba atom, while atom O4 is connected to two Ba atoms. Furthermore, the whole molecule chelates the Ni atom to form a six-membered ring. The resulting six-membered chelate ring Ni/O1/C1/C2/C3/O3 has a boat conformation, with atoms Ni and C2 lying 0.4769 and 0.4176 Å, respectively, out of the O1/C1/C3/O3 mean plane. The O—C—O angle for the monodentate carboxylate group is 123.2 (3)°, slightly larger than the value of 121.9 (3)° for the chelating carboxylate group. The two C—O bond distances (O1—C1 and O2—C1) of the monodentate carboxylate group are 1.255 (4) and 1.260 (4) Å, respectively, while the two C—O bond distances (O4—C3 and O3—C3) of the chelating carboxylate group are 1.240 (4) and 1.277 (4) Å, respectively. This indicates that the mesomeric effect for the monodentate carboxylate group is larger than that of the chelating carboxylate group.

The Ba atom is coordinated by two nitrate group O atoms, five water molecules and three malonate O atoms. The Ba—O distances for Ba—Onitrate range from 2.886 (3) to 2.902 (3) Å, those for Ba—Owater range from 2.805 (3) to 2.897 (2) Å and those for Ba—Omalonate range from 2.752 (2) to 2.941 (2) Å. Of these Ba—O distances, Ba—O3 and Ba—O5 are the longest, and the increase of these bond lengths is related to the requirements of the conformation of the fused ring system. These Ba—O distances correspond well with the sum of the ionic radii [1.21 + 1.66 = 2.87 Å for ten-coordinated Ba2+ ions; Bauer et al., 2005] and are comparable with the values reported for barium malonate (Hodgson & Asplund, 1991). The Ba polyhedra share edges to form zigzag BaO8 polyhedral chains propagating along [100] via pairs of water molecules, O10 and O10ii atoms or bridging malonate O4 and O4i atoms (see Table 1 for symmetry codes). This results in Ba1···Ba1i and Ba1···Ba1ii distances of 4.6867 (7) and 4.7877 (8) Å, respectively, and a Ba1i—Ba1—Ba1ii angle of 97.422 (16)°. Each Ni atom is connected to two Ba atoms through atoms O3 and O3iii of the carboxylate group in the c direction, defining infinite chains of BaO8 polyhedra. The Ni···Ba distance is 4.6731 (9) Å, and the Ba—Ni—Ba angle is 180°. Thus, a complete two-dimensional polymeric layer is formed in the direction of the ac plane.

In the crystal structure of (I), symmetry-related molecules are linked by hydrogen bonds (Table 2). Hydrogen bonding plays an important role in the stabilization of the extended structure. The structure consists of alternating layers in the b direction. Neighbouring layers are linked together via these hydrogen bonds to build up a three-dimensional network (Fig. 2).

Experimental top

The title complex was prepared under continuous stirring with successive addition of malonic acid (0.43 g, 4 mmol), NiCl2·6H2O (0.47 g, 2 mmol), barium nitrate (0.52 g, 2 mmol) and Ba(OH)2·8H2O (0.63 g, 2 mmol) to distilled water (30 ml) at room temperature. After filtration, slow evaporation over a period of three weeks at room temperature provided green plate-like crystals of (I).

Refinement top

The H atoms of the water molecule were found in difference Fourier maps. However, during refinement, they were fixed at O—H distances of 0.847–856 Å and their Uiso values were set at 1.2Ueq(O). The H atoms of the C—H groups were treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme and coordination polyhedra for Ni and Ba atoms. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 1 - y, -z; (iii) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A packing diagram of (I), showing the hydrogen bonds (dashed lines) and the alternating layers in the direction of b, viewed down the c axis.
Poly[tetra-µ-aqua-hexaaqua-µ3-malonato-dinitratodibarium(II)nickel(II)] top
Crystal data top
[Ba2Ni(C3H2O4)2(NO3)2(H2O)10]Z = 1
Mr = 841.66F(000) = 406
TriclinicP1Dx = 2.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1193 (13) ÅCell parameters from 2511 reflections
b = 9.3307 (16) Åθ = 2.4–26.3°
c = 9.8866 (17) ŵ = 4.24 mm1
α = 110.428 (2)°T = 294 K
β = 104.240 (2)°Plate, green
γ = 95.622 (3)°0.22 × 0.14 × 0.10 mm
V = 584.19 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2042 independent reflections
Radiation source: fine-focus sealed tube1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 48
Tmin = 0.492, Tmax = 0.657k = 1111
2940 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2]
where P = (Fo2 + 2Fc2)/3
2042 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ba2Ni(C3H2O4)2(NO3)2(H2O)10]γ = 95.622 (3)°
Mr = 841.66V = 584.19 (18) Å3
TriclinicP1Z = 1
a = 7.1193 (13) ÅMo Kα radiation
b = 9.3307 (16) ŵ = 4.24 mm1
c = 9.8866 (17) ÅT = 294 K
α = 110.428 (2)°0.22 × 0.14 × 0.10 mm
β = 104.240 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2042 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1877 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.657Rint = 0.015
2940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.06Δρmax = 1.01 e Å3
2042 reflectionsΔρmin = 0.66 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.21469 (3)0.32387 (2)0.02335 (2)0.01753 (9)
Ni10.50000.50000.50000.01504 (14)
C10.1845 (5)0.6712 (4)0.5733 (4)0.0184 (7)
C20.1753 (6)0.7095 (5)0.4353 (4)0.0272 (8)
H2A0.27730.80130.46620.033*
H2B0.04910.73890.40630.033*
C30.1983 (5)0.5874 (4)0.2941 (4)0.0180 (7)
N10.4451 (5)0.1229 (4)0.2588 (4)0.0270 (7)
O10.3105 (3)0.5976 (3)0.6139 (3)0.0219 (5)
O20.0650 (4)0.7212 (3)0.6450 (3)0.0305 (6)
O30.3182 (3)0.4961 (3)0.3057 (3)0.0198 (5)
O40.1021 (4)0.5834 (3)0.1694 (3)0.0278 (6)
O50.4130 (4)0.0795 (4)0.1590 (3)0.0375 (7)
O60.3707 (5)0.2339 (4)0.2774 (3)0.0426 (8)
O70.5456 (5)0.0588 (4)0.3373 (3)0.0471 (8)
O80.6709 (3)0.7176 (3)0.5467 (3)0.0225 (5)
H8A0.62860.74890.47520.027*
H8B0.79140.70800.56450.027*
O90.0241 (4)0.0499 (3)0.2576 (3)0.0411 (7)
H9A0.00650.03880.29060.049*
H9B0.14260.05510.29800.049*
O100.3611 (4)0.5786 (3)0.0979 (3)0.0253 (6)
H10A0.30820.65380.05820.030*
H10B0.36590.56110.18720.030*
O110.1070 (4)0.2046 (3)0.0541 (3)0.0308 (6)
H11A0.10900.22360.14440.037*
H11B0.12780.10580.01030.037*
O120.3281 (4)0.1286 (3)0.1317 (3)0.0319 (6)
H12A0.41200.06950.13040.038*
H12B0.31440.16780.21910.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01748 (13)0.02191 (13)0.01661 (13)0.00802 (8)0.00583 (9)0.00991 (9)
Ni10.0148 (3)0.0208 (3)0.0122 (3)0.0078 (2)0.0038 (2)0.0087 (3)
C10.0164 (16)0.0211 (18)0.0141 (17)0.0037 (14)0.0032 (14)0.0033 (14)
C20.037 (2)0.031 (2)0.021 (2)0.0191 (17)0.0123 (17)0.0123 (17)
C30.0165 (16)0.0228 (19)0.0165 (18)0.0047 (14)0.0050 (14)0.0096 (15)
N10.0283 (17)0.0297 (18)0.0248 (17)0.0078 (14)0.0105 (14)0.0106 (15)
O10.0215 (12)0.0326 (14)0.0175 (13)0.0139 (11)0.0088 (10)0.0124 (11)
O20.0261 (13)0.0516 (18)0.0215 (14)0.0215 (13)0.0120 (12)0.0163 (13)
O30.0210 (12)0.0254 (13)0.0152 (12)0.0114 (10)0.0030 (10)0.0105 (10)
O40.0338 (14)0.0347 (15)0.0155 (13)0.0187 (12)0.0025 (11)0.0105 (12)
O50.0493 (18)0.0478 (18)0.0409 (17)0.0281 (15)0.0283 (15)0.0322 (15)
O60.063 (2)0.0448 (18)0.0461 (19)0.0308 (16)0.0322 (17)0.0323 (16)
O70.060 (2)0.058 (2)0.0390 (18)0.0320 (17)0.0340 (17)0.0193 (16)
O80.0198 (12)0.0276 (14)0.0257 (14)0.0090 (10)0.0069 (11)0.0156 (12)
O90.0334 (16)0.0294 (16)0.0475 (19)0.0055 (12)0.0026 (14)0.0063 (14)
O100.0281 (13)0.0307 (14)0.0218 (13)0.0112 (11)0.0085 (11)0.0134 (12)
O110.0363 (15)0.0334 (15)0.0281 (15)0.0078 (12)0.0141 (12)0.0149 (13)
O120.0387 (15)0.0381 (16)0.0279 (15)0.0190 (13)0.0126 (13)0.0187 (13)
Geometric parameters (Å, º) top
Ni1—O32.021 (2)C2—C31.521 (5)
Ni1—O12.047 (2)C2—H2A0.9700
Ni1—O82.098 (2)C2—H2B0.9700
Ba1—O4i2.752 (2)C3—O41.240 (4)
Ba1—O92.805 (3)C3—O31.277 (4)
Ba1—O122.820 (2)N1—O71.227 (4)
Ba1—O112.833 (3)N1—O51.250 (4)
Ba1—O42.837 (3)N1—O61.257 (4)
Ba1—O10ii2.882 (3)O8—H8A0.8556
Ba1—O62.886 (3)O8—H8B0.8523
Ba1—O102.897 (2)O9—H9A0.8488
Ba1—O52.902 (3)O9—H9B0.8544
Ba1—O32.941 (2)O10—H10A0.8487
Ba1—Ba1i4.6867 (7)O10—H10B0.8497
Ba1—Ba1ii4.7877 (8)O11—H11A0.8508
C1—O11.255 (4)O11—H11B0.8500
C1—O21.260 (4)O12—H12A0.8514
C1—C21.516 (5)O12—H12B0.8467
O4i—Ba1—O974.47 (8)O10—Ba1—Ba1ii33.95 (5)
O4i—Ba1—O12144.62 (8)O5—Ba1—Ba1ii85.20 (6)
O9—Ba1—O1285.42 (9)O3—Ba1—Ba1ii83.59 (5)
O4i—Ba1—O1176.18 (8)Ba1i—Ba1—Ba1ii97.422 (16)
O9—Ba1—O1167.77 (8)O3—Ni1—O3iii180.000 (1)
O12—Ba1—O1169.28 (8)O3—Ni1—O1iii90.09 (9)
O4i—Ba1—O466.04 (9)O3iii—Ni1—O1iii89.91 (9)
O9—Ba1—O4129.30 (8)O3—Ni1—O189.91 (9)
O12—Ba1—O4109.20 (7)O3iii—Ni1—O190.09 (9)
O11—Ba1—O472.82 (8)O1iii—Ni1—O1180.000 (1)
O4i—Ba1—O10ii138.88 (8)O3—Ni1—O8iii87.48 (9)
O9—Ba1—O10ii130.99 (8)O3iii—Ni1—O8iii92.52 (9)
O12—Ba1—O10ii75.88 (7)O1iii—Ni1—O8iii93.23 (10)
O11—Ba1—O10ii138.85 (7)O1—Ni1—O8iii86.77 (10)
O4—Ba1—O10ii99.68 (8)O3—Ni1—O892.52 (9)
O4i—Ba1—O693.94 (8)O3iii—Ni1—O887.48 (9)
O9—Ba1—O669.20 (9)O1iii—Ni1—O886.77 (10)
O12—Ba1—O6105.90 (8)O1—Ni1—O893.23 (10)
O11—Ba1—O6136.95 (9)O8iii—Ni1—O8180.0
O4—Ba1—O6141.11 (8)O1—C1—O2123.2 (3)
O10ii—Ba1—O673.12 (8)O1—C1—C2120.2 (3)
O4i—Ba1—O1071.05 (8)O2—C1—C2116.5 (3)
O9—Ba1—O10118.97 (8)C1—C2—C3119.6 (3)
O12—Ba1—O10143.99 (7)C1—C2—H2A107.4
O11—Ba1—O10142.17 (7)C3—C2—H2A107.4
O4—Ba1—O1076.91 (7)C1—C2—H2B107.4
O10ii—Ba1—O1068.12 (8)C3—C2—H2B107.4
O6—Ba1—O1064.84 (8)H2A—C2—H2B107.0
O4i—Ba1—O5127.23 (8)O4—C3—O3121.9 (3)
O9—Ba1—O562.86 (9)O4—C3—C2117.8 (3)
O12—Ba1—O562.55 (8)O3—C3—C2120.2 (3)
O11—Ba1—O5111.50 (8)O7—N1—O5121.1 (3)
O4—Ba1—O5166.34 (8)O7—N1—O6120.7 (3)
O10ii—Ba1—O568.31 (8)O5—N1—O6118.2 (3)
O6—Ba1—O543.64 (8)C1—O1—Ni1126.5 (2)
O10—Ba1—O5103.26 (7)C3—O3—Ni1126.3 (2)
O4i—Ba1—O3110.12 (7)C3—O3—Ba193.66 (19)
O9—Ba1—O3141.54 (8)Ni1—O3—Ba1139.99 (10)
O12—Ba1—O369.20 (7)C3—O4—Ba1i144.3 (2)
O11—Ba1—O376.22 (7)C3—O4—Ba199.6 (2)
O4—Ba1—O344.71 (7)Ba1i—O4—Ba1113.96 (9)
O10ii—Ba1—O371.38 (7)N1—O5—Ba198.5 (2)
O6—Ba1—O3144.25 (8)N1—O6—Ba199.1 (2)
O10—Ba1—O397.65 (7)Ni1—O8—H8A110.3
O5—Ba1—O3122.54 (7)Ni1—O8—H8B107.0
O4i—Ba1—Ba1i33.59 (5)H8A—O8—H8B115.5
O9—Ba1—Ba1i103.07 (6)Ba1—O9—H9A127.4
O12—Ba1—Ba1i132.68 (5)Ba1—O9—H9B116.5
O11—Ba1—Ba1i71.40 (6)H9A—O9—H9B116.1
O4—Ba1—Ba1i32.45 (5)Ba1ii—O10—Ba1111.88 (8)
O10ii—Ba1—Ba1i122.97 (5)Ba1ii—O10—H10A109.1
O6—Ba1—Ba1i120.77 (6)Ba1—O10—H10A106.2
O10—Ba1—Ba1i70.87 (5)Ba1ii—O10—H10B91.5
O5—Ba1—Ba1i160.65 (6)Ba1—O10—H10B120.0
O3—Ba1—Ba1i76.80 (4)H10A—O10—H10B117.1
O4i—Ba1—Ba1ii104.89 (6)Ba1—O11—H11A124.4
O9—Ba1—Ba1ii133.47 (6)Ba1—O11—H11B106.2
O12—Ba1—Ba1ii110.04 (6)H11A—O11—H11B106.2
O11—Ba1—Ba1ii158.62 (6)Ba1—O12—H12A134.5
O4—Ba1—Ba1ii87.95 (6)Ba1—O12—H12B108.3
O10ii—Ba1—Ba1ii34.16 (5)H12A—O12—H12B110.9
O6—Ba1—Ba1ii64.40 (7)
O1—C1—C2—C341.6 (5)O6—Ba1—O4—C3128.2 (2)
O2—C1—C2—C3140.6 (3)O10—Ba1—O4—C3117.8 (2)
C1—C2—C3—O4145.5 (3)O5—Ba1—O4—C325.5 (4)
C1—C2—C3—O336.7 (5)O3—Ba1—O4—C32.40 (18)
O2—C1—O1—Ni1176.1 (3)Ba1i—Ba1—O4—C3167.4 (3)
C2—C1—O1—Ni16.3 (5)Ba1ii—Ba1—O4—C385.4 (2)
O3—Ni1—O1—C121.8 (3)O4i—Ba1—O4—Ba1i0.0
O3iii—Ni1—O1—C1158.2 (3)O9—Ba1—O4—Ba1i42.05 (14)
O8iii—Ni1—O1—C1109.3 (3)O12—Ba1—O4—Ba1i142.18 (9)
O8—Ni1—O1—C170.7 (3)O11—Ba1—O4—Ba1i82.17 (10)
O4—C3—O3—Ni1174.9 (2)O10ii—Ba1—O4—Ba1i139.51 (9)
C2—C3—O3—Ni12.9 (4)O6—Ba1—O4—Ba1i64.45 (17)
O4—C3—O3—Ba14.4 (3)O10—Ba1—O4—Ba1i74.84 (10)
C2—C3—O3—Ba1177.9 (3)O5—Ba1—O4—Ba1i167.2 (3)
O1iii—Ni1—O3—C3153.5 (3)O3—Ba1—O4—Ba1i169.75 (16)
O1—Ni1—O3—C326.5 (3)Ba1ii—Ba1—O4—Ba1i107.29 (9)
O8iii—Ni1—O3—C3113.3 (3)O7—N1—O5—Ba1173.2 (3)
O8—Ni1—O3—C366.7 (3)O6—N1—O5—Ba17.1 (4)
O1iii—Ni1—O3—Ba125.37 (17)O4i—Ba1—O5—N151.7 (3)
O1—Ni1—O3—Ba1154.63 (17)O9—Ba1—O5—N191.6 (2)
O8iii—Ni1—O3—Ba167.87 (16)O12—Ba1—O5—N1168.9 (3)
O8—Ni1—O3—Ba1112.13 (16)O11—Ba1—O5—N1140.4 (2)
O4i—Ba1—O3—C37.7 (2)O4—Ba1—O5—N1113.5 (3)
O9—Ba1—O3—C397.8 (2)O10ii—Ba1—O5—N184.0 (2)
O12—Ba1—O3—C3149.82 (19)O6—Ba1—O5—N14.0 (2)
O11—Ba1—O3—C377.07 (18)O10—Ba1—O5—N124.4 (2)
O4—Ba1—O3—C32.30 (17)O3—Ba1—O5—N1132.6 (2)
O10ii—Ba1—O3—C3128.65 (19)Ba1i—Ba1—O5—N145.4 (3)
O6—Ba1—O3—C3121.67 (19)Ba1ii—Ba1—O5—N153.3 (2)
O10—Ba1—O3—C364.89 (19)O7—N1—O6—Ba1173.2 (3)
O5—Ba1—O3—C3176.00 (17)O5—N1—O6—Ba17.2 (4)
Ba1i—Ba1—O3—C33.32 (17)O4i—Ba1—O6—N1147.7 (2)
Ba1ii—Ba1—O3—C395.88 (18)O9—Ba1—O6—N176.0 (2)
O4i—Ba1—O3—Ni1173.25 (15)O12—Ba1—O6—N12.7 (2)
O9—Ba1—O3—Ni183.1 (2)O11—Ba1—O6—N173.8 (3)
O12—Ba1—O3—Ni131.10 (15)O4—Ba1—O6—N1156.57 (19)
O11—Ba1—O3—Ni1103.85 (17)O10ii—Ba1—O6—N172.1 (2)
O4—Ba1—O3—Ni1176.8 (2)O10—Ba1—O6—N1145.4 (2)
O10ii—Ba1—O3—Ni150.42 (15)O5—Ba1—O6—N13.9 (2)
O6—Ba1—O3—Ni157.4 (2)O3—Ba1—O6—N179.0 (3)
O10—Ba1—O3—Ni1114.19 (16)Ba1i—Ba1—O6—N1169.14 (19)
O5—Ba1—O3—Ni13.1 (2)Ba1ii—Ba1—O6—N1107.7 (2)
Ba1i—Ba1—O3—Ni1177.60 (17)O4i—Ba1—O10—Ba1ii175.06 (11)
Ba1ii—Ba1—O3—Ni183.20 (16)O9—Ba1—O10—Ba1ii125.85 (9)
O3—C3—O4—Ba1i164.6 (3)O12—Ba1—O10—Ba1ii1.48 (17)
C2—C3—O4—Ba1i17.6 (6)O11—Ba1—O10—Ba1ii143.69 (10)
O3—C3—O4—Ba14.6 (3)O4—Ba1—O10—Ba1ii106.23 (10)
C2—C3—O4—Ba1177.6 (3)O10ii—Ba1—O10—Ba1ii0.0
O4i—Ba1—O4—C3167.4 (3)O6—Ba1—O10—Ba1ii80.96 (10)
O9—Ba1—O4—C3125.3 (2)O5—Ba1—O10—Ba1ii59.75 (10)
O12—Ba1—O4—C325.2 (2)O3—Ba1—O10—Ba1ii66.35 (9)
O11—Ba1—O4—C385.2 (2)Ba1i—Ba1—O10—Ba1ii139.47 (9)
O10ii—Ba1—O4—C353.1 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O7ii0.972.563.336 (5)137
O12—H12B···O8iii0.852.162.995 (4)171
O12—H12A···O5iv0.852.002.839 (4)168
O11—H11B···O12v0.852.253.024 (4)152
O11—H11A···O2vi0.851.902.739 (4)170
O10—H10B···O1vii0.852.062.853 (3)155
O10—H10A···O11i0.852.042.837 (4)156
O9—H9B···O7viii0.852.162.987 (4)162
O9—H9A···O2ix0.852.223.058 (4)172
O8—H8B···O2x0.851.892.726 (3)168
O8—H8A···O6ii0.862.022.804 (4)152
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z; (vi) x, y+1, z+1; (vii) x, y, z1; (viii) x1, y, z; (ix) x, y1, z1; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ba2Ni(C3H2O4)2(NO3)2(H2O)10]
Mr841.66
Crystal system, space groupTriclinicP1
Temperature (K)294
a, b, c (Å)7.1193 (13), 9.3307 (16), 9.8866 (17)
α, β, γ (°)110.428 (2), 104.240 (2), 95.622 (3)
V3)584.19 (18)
Z1
Radiation typeMo Kα
µ (mm1)4.24
Crystal size (mm)0.22 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.492, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
2940, 2042, 1877
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.06
No. of reflections2042
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.66

Computer programs: SMART (Bruker 1997), SAINT (Bruker 1997), SAINT, SHELXTL (Bruker, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O32.021 (2)Ba1—O52.902 (3)
Ni1—O12.047 (2)Ba1—O32.941 (2)
Ni1—O82.098 (2)Ba1—Ba1i4.6867 (7)
Ba1—O4i2.752 (2)Ba1—Ba1ii4.7877 (8)
Ba1—O92.805 (3)C1—O11.255 (4)
Ba1—O122.820 (2)C1—O21.260 (4)
Ba1—O112.833 (3)C3—O41.240 (4)
Ba1—O42.837 (3)C3—O31.277 (4)
Ba1—O10ii2.882 (3)N1—O71.227 (4)
Ba1—O62.886 (3)N1—O51.250 (4)
Ba1—O102.897 (2)N1—O61.257 (4)
Ba1i—Ba1—Ba1ii97.422 (16)O3iii—Ni1—O887.48 (9)
O3—Ni1—O1iii90.09 (9)O1iii—Ni1—O886.77 (10)
O3—Ni1—O189.91 (9)O1—C1—O2123.2 (3)
O3—Ni1—O8iii87.48 (9)O4—C3—O3121.9 (3)
O3iii—Ni1—O8iii92.52 (9)O7—N1—O5121.1 (3)
O1iii—Ni1—O8iii93.23 (10)O7—N1—O6120.7 (3)
O3—Ni1—O892.52 (9)O5—N1—O6118.2 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O7ii0.972.563.336 (5)137
O12—H12B···O8iii0.852.162.995 (4)171
O12—H12A···O5iv0.852.002.839 (4)168
O11—H11B···O12v0.852.253.024 (4)152
O11—H11A···O2vi0.851.902.739 (4)170
O10—H10B···O1vii0.852.062.853 (3)155
O10—H10A···O11i0.852.042.837 (4)156
O9—H9B···O7viii0.852.162.987 (4)162
O9—H9A···O2ix0.852.223.058 (4)172
O8—H8B···O2x0.851.892.726 (3)168
O8—H8A···O6ii0.862.022.804 (4)152
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z; (vi) x, y+1, z+1; (vii) x, y, z1; (viii) x1, y, z; (ix) x, y1, z1; (x) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds