Evidence for Rigid Triaxial Deformation in Ge76 from a Model-Independent Analysis

A. D. Ayangeakaa et al.
Phys. Rev. Lett. 123, 102501 – Published 6 September 2019

Abstract

An extensive, model-independent analysis of the nature of triaxial deformation in Ge76, a candidate for neutrinoless double-beta (0νββ) decay, was carried out following multistep Coulomb excitation. Shape parameters deduced on the basis of a rotational-invariant sum-rule analysis provided considerable insight into the underlying collectivity of the ground-state and γ bands. Both sequences were determined to be characterized by the same β and γ deformation parameter values. In addition, compelling evidence for low-spin, rigid triaxial deformation in Ge76 was obtained for the first time from the analysis of the statistical fluctuations of the quadrupole asymmetry deduced from the measured E2 matrix elements. These newly determined shape parameters are important input and constraints for calculations aimed at providing, with suitable accuracy, the nuclear matrix elements relevant to 0νββ.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 June 2019

DOI:https://doi.org/10.1103/PhysRevLett.123.102501

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 123, Iss. 10 — 6 September 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×